from enum import Enum | |
from typing import Union | |
import torch | |
class Format(str, Enum): | |
NCHW = 'NCHW' | |
NHWC = 'NHWC' | |
NCL = 'NCL' | |
NLC = 'NLC' | |
FormatT = Union[str, Format] | |
def get_spatial_dim(fmt: FormatT): | |
fmt = Format(fmt) | |
if fmt is Format.NLC: | |
dim = (1,) | |
elif fmt is Format.NCL: | |
dim = (2,) | |
elif fmt is Format.NHWC: | |
dim = (1, 2) | |
else: | |
dim = (2, 3) | |
return dim | |
def get_channel_dim(fmt: FormatT): | |
fmt = Format(fmt) | |
if fmt is Format.NHWC: | |
dim = 3 | |
elif fmt is Format.NLC: | |
dim = 2 | |
else: | |
dim = 1 | |
return dim | |
def nchw_to(x: torch.Tensor, fmt: Format): | |
if fmt == Format.NHWC: | |
x = x.permute(0, 2, 3, 1) | |
elif fmt == Format.NLC: | |
x = x.flatten(2).transpose(1, 2) | |
elif fmt == Format.NCL: | |
x = x.flatten(2) | |
return x | |
def nhwc_to(x: torch.Tensor, fmt: Format): | |
if fmt == Format.NCHW: | |
x = x.permute(0, 3, 1, 2) | |
elif fmt == Format.NLC: | |
x = x.flatten(1, 2) | |
elif fmt == Format.NCL: | |
x = x.flatten(1, 2).transpose(1, 2) | |
return x | |