meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
6.48 kB
""" Model creation / weight loading / state_dict helpers
Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
import os
from typing import Any, Callable, Dict, Optional, Union
import torch
try:
import safetensors.torch
_has_safetensors = True
except ImportError:
_has_safetensors = False
_logger = logging.getLogger(__name__)
__all__ = ['clean_state_dict', 'load_state_dict', 'load_checkpoint', 'remap_state_dict', 'resume_checkpoint']
def _remove_prefix(text, prefix):
# FIXME replace with 3.9 stdlib fn when min at 3.9
if text.startswith(prefix):
return text[len(prefix):]
return text
def clean_state_dict(state_dict: Dict[str, Any]) -> Dict[str, Any]:
# 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training
cleaned_state_dict = {}
to_remove = (
'module.', # DDP wrapper
'_orig_mod.', # torchcompile dynamo wrapper
)
for k, v in state_dict.items():
for r in to_remove:
k = _remove_prefix(k, r)
cleaned_state_dict[k] = v
return cleaned_state_dict
def load_state_dict(
checkpoint_path: str,
use_ema: bool = True,
device: Union[str, torch.device] = 'cpu',
weights_only: bool = False,
) -> Dict[str, Any]:
if checkpoint_path and os.path.isfile(checkpoint_path):
# Check if safetensors or not and load weights accordingly
if str(checkpoint_path).endswith(".safetensors"):
assert _has_safetensors, "`pip install safetensors` to use .safetensors"
checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
else:
try:
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only)
except TypeError:
checkpoint = torch.load(checkpoint_path, map_location=device)
state_dict_key = ''
if isinstance(checkpoint, dict):
if use_ema and checkpoint.get('state_dict_ema', None) is not None:
state_dict_key = 'state_dict_ema'
elif use_ema and checkpoint.get('model_ema', None) is not None:
state_dict_key = 'model_ema'
elif 'state_dict' in checkpoint:
state_dict_key = 'state_dict'
elif 'model' in checkpoint:
state_dict_key = 'model'
state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint)
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
return state_dict
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_checkpoint(
model: torch.nn.Module,
checkpoint_path: str,
use_ema: bool = True,
device: Union[str, torch.device] = 'cpu',
strict: bool = True,
remap: bool = False,
filter_fn: Optional[Callable] = None,
weights_only: bool = False,
):
if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'):
# numpy checkpoint, try to load via model specific load_pretrained fn
if hasattr(model, 'load_pretrained'):
model.load_pretrained(checkpoint_path)
else:
raise NotImplementedError('Model cannot load numpy checkpoint')
return
state_dict = load_state_dict(checkpoint_path, use_ema, device=device, weights_only=weights_only)
if remap:
state_dict = remap_state_dict(state_dict, model)
elif filter_fn:
state_dict = filter_fn(state_dict, model)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
return incompatible_keys
def remap_state_dict(
state_dict: Dict[str, Any],
model: torch.nn.Module,
allow_reshape: bool = True
):
""" remap checkpoint by iterating over state dicts in order (ignoring original keys).
This assumes models (and originating state dict) were created with params registered in same order.
"""
out_dict = {}
for (ka, va), (kb, vb) in zip(model.state_dict().items(), state_dict.items()):
assert va.numel() == vb.numel(), f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
if va.shape != vb.shape:
if allow_reshape:
vb = vb.reshape(va.shape)
else:
assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.'
out_dict[ka] = vb
return out_dict
def resume_checkpoint(
model: torch.nn.Module,
checkpoint_path: str,
optimizer: torch.optim.Optimizer = None,
loss_scaler: Any = None,
log_info: bool = True,
):
resume_epoch = None
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
if log_info:
_logger.info('Restoring model state from checkpoint...')
state_dict = clean_state_dict(checkpoint['state_dict'])
model.load_state_dict(state_dict)
if optimizer is not None and 'optimizer' in checkpoint:
if log_info:
_logger.info('Restoring optimizer state from checkpoint...')
optimizer.load_state_dict(checkpoint['optimizer'])
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
if log_info:
_logger.info('Restoring AMP loss scaler state from checkpoint...')
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
if 'epoch' in checkpoint:
resume_epoch = checkpoint['epoch']
if 'version' in checkpoint and checkpoint['version'] > 1:
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
if log_info:
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
else:
model.load_state_dict(checkpoint)
if log_info:
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
return resume_epoch
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()