|
""" Model Registry |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
import fnmatch |
|
import re |
|
import sys |
|
import warnings |
|
from collections import defaultdict, deque |
|
from copy import deepcopy |
|
from dataclasses import replace |
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple |
|
|
|
from ._pretrained import PretrainedCfg, DefaultCfg |
|
|
|
__all__ = [ |
|
'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', |
|
'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', |
|
'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_pretrained_cfgs' |
|
] |
|
|
|
_module_to_models: Dict[str, Set[str]] = defaultdict(set) |
|
_model_to_module: Dict[str, str] = {} |
|
_model_entrypoints: Dict[str, Callable[..., Any]] = {} |
|
_model_has_pretrained: Set[str] = set() |
|
_model_default_cfgs: Dict[str, PretrainedCfg] = {} |
|
_model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} |
|
_model_with_tags: Dict[str, List[str]] = defaultdict(list) |
|
_module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) |
|
_deprecated_models: Dict[str, Optional[str]] = {} |
|
|
|
|
|
def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]: |
|
model_name, *tag_list = model_name.split('.', 1) |
|
tag = tag_list[0] if tag_list else no_tag |
|
return model_name, tag |
|
|
|
|
|
def get_arch_name(model_name: str) -> str: |
|
return split_model_name_tag(model_name)[0] |
|
|
|
|
|
def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): |
|
out = defaultdict(DefaultCfg) |
|
default_set = set() |
|
|
|
for k, v in cfgs.items(): |
|
if isinstance(v, dict): |
|
v = PretrainedCfg(**v) |
|
has_weights = v.has_weights |
|
|
|
model, tag = split_model_name_tag(k) |
|
is_default_set = model in default_set |
|
priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set) |
|
tag = tag.strip('*') |
|
|
|
default_cfg = out[model] |
|
|
|
if priority: |
|
default_cfg.tags.appendleft(tag) |
|
default_set.add(model) |
|
elif has_weights and not default_cfg.is_pretrained: |
|
default_cfg.tags.appendleft(tag) |
|
else: |
|
default_cfg.tags.append(tag) |
|
|
|
if has_weights: |
|
default_cfg.is_pretrained = True |
|
|
|
default_cfg.cfgs[tag] = v |
|
|
|
return out |
|
|
|
|
|
def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: |
|
|
|
mod = sys.modules[fn.__module__] |
|
module_name_split = fn.__module__.split('.') |
|
module_name = module_name_split[-1] if len(module_name_split) else '' |
|
|
|
|
|
model_name = fn.__name__ |
|
if hasattr(mod, '__all__'): |
|
mod.__all__.append(model_name) |
|
else: |
|
mod.__all__ = [model_name] |
|
|
|
|
|
if model_name in _model_entrypoints: |
|
warnings.warn( |
|
f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being ' |
|
'registered conflicts with an existing name. Please check if this is not expected.', |
|
stacklevel=2, |
|
) |
|
_model_entrypoints[model_name] = fn |
|
_model_to_module[model_name] = module_name |
|
_module_to_models[module_name].add(model_name) |
|
if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: |
|
|
|
|
|
default_cfg = mod.default_cfgs[model_name] |
|
if not isinstance(default_cfg, DefaultCfg): |
|
|
|
assert isinstance(default_cfg, dict) |
|
|
|
pretrained_cfg = PretrainedCfg(**default_cfg) |
|
default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) |
|
|
|
for tag_idx, tag in enumerate(default_cfg.tags): |
|
is_default = tag_idx == 0 |
|
pretrained_cfg = default_cfg.cfgs[tag] |
|
model_name_tag = '.'.join([model_name, tag]) if tag else model_name |
|
replace_items = dict(architecture=model_name, tag=tag if tag else None) |
|
if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': |
|
|
|
replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag |
|
pretrained_cfg = replace(pretrained_cfg, **replace_items) |
|
|
|
if is_default: |
|
_model_pretrained_cfgs[model_name] = pretrained_cfg |
|
if pretrained_cfg.has_weights: |
|
|
|
_model_has_pretrained.add(model_name) |
|
|
|
if tag: |
|
_model_pretrained_cfgs[model_name_tag] = pretrained_cfg |
|
if pretrained_cfg.has_weights: |
|
|
|
_model_has_pretrained.add(model_name_tag) |
|
_model_with_tags[model_name].append(model_name_tag) |
|
else: |
|
_model_with_tags[model_name].append(model_name) |
|
|
|
_model_default_cfgs[model_name] = default_cfg |
|
|
|
return fn |
|
|
|
|
|
def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''): |
|
def _fn(pretrained=False, **kwargs): |
|
assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' |
|
current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ |
|
warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) |
|
pretrained_cfg = kwargs.pop('pretrained_cfg', None) |
|
return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) |
|
return _fn |
|
|
|
|
|
def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): |
|
mod = sys.modules[module_name] |
|
module_name_split = module_name.split('.') |
|
module_name = module_name_split[-1] if len(module_name_split) else '' |
|
|
|
for deprecated, current in deprecation_map.items(): |
|
if hasattr(mod, '__all__'): |
|
mod.__all__.append(deprecated) |
|
current_fn = None |
|
current_tag = '' |
|
if current: |
|
current_name, current_tag = split_model_name_tag(current) |
|
current_fn = getattr(mod, current_name) |
|
deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) |
|
setattr(mod, deprecated, deprecated_entrypoint_fn) |
|
_model_entrypoints[deprecated] = deprecated_entrypoint_fn |
|
_model_to_module[deprecated] = module_name |
|
_module_to_models[module_name].add(deprecated) |
|
_deprecated_models[deprecated] = current |
|
_module_to_deprecated_models[module_name][deprecated] = current |
|
|
|
|
|
def _natural_key(string_: str) -> List[Union[int, str]]: |
|
"""See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/""" |
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] |
|
|
|
|
|
def _expand_filter(filter: str): |
|
""" expand a 'base_filter' to 'base_filter.*' if no tag portion""" |
|
filter_base, filter_tag = split_model_name_tag(filter) |
|
if not filter_tag: |
|
return ['.'.join([filter_base, '*']), filter] |
|
else: |
|
return [filter] |
|
|
|
|
|
def list_models( |
|
filter: Union[str, List[str]] = '', |
|
module: Union[str, List[str]] = '', |
|
pretrained: bool = False, |
|
exclude_filters: Union[str, List[str]] = '', |
|
name_matches_cfg: bool = False, |
|
include_tags: Optional[bool] = None, |
|
) -> List[str]: |
|
""" Return list of available model names, sorted alphabetically |
|
|
|
Args: |
|
filter - Wildcard filter string that works with fnmatch |
|
module - Limit model selection to a specific submodule (ie 'vision_transformer') |
|
pretrained - Include only models with valid pretrained weights if True |
|
exclude_filters - Wildcard filters to exclude models after including them with filter |
|
name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) |
|
include_tags - Include pretrained tags in model names (model.tag). If None, defaults |
|
set to True when pretrained=True else False (default: None) |
|
|
|
Returns: |
|
models - The sorted list of models |
|
|
|
Example: |
|
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' |
|
model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module |
|
""" |
|
if filter: |
|
include_filters = filter if isinstance(filter, (tuple, list)) else [filter] |
|
else: |
|
include_filters = [] |
|
|
|
if include_tags is None: |
|
|
|
include_tags = pretrained |
|
|
|
if not module: |
|
all_models: Set[str] = set(_model_entrypoints.keys()) |
|
else: |
|
if isinstance(module, str): |
|
all_models: Set[str] = _module_to_models[module] |
|
else: |
|
assert isinstance(module, Sequence) |
|
all_models: Set[str] = set() |
|
for m in module: |
|
all_models.update(_module_to_models[m]) |
|
all_models = all_models - _deprecated_models.keys() |
|
|
|
if include_tags: |
|
|
|
models_with_tags: Set[str] = set() |
|
for m in all_models: |
|
models_with_tags.update(_model_with_tags[m]) |
|
all_models = models_with_tags |
|
|
|
include_filters = [ef for f in include_filters for ef in _expand_filter(f)] |
|
exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] |
|
|
|
if include_filters: |
|
models: Set[str] = set() |
|
for f in include_filters: |
|
include_models = fnmatch.filter(all_models, f) |
|
if len(include_models): |
|
models = models.union(include_models) |
|
else: |
|
models = all_models |
|
|
|
if exclude_filters: |
|
if not isinstance(exclude_filters, (tuple, list)): |
|
exclude_filters = [exclude_filters] |
|
for xf in exclude_filters: |
|
exclude_models = fnmatch.filter(models, xf) |
|
if len(exclude_models): |
|
models = models.difference(exclude_models) |
|
|
|
if pretrained: |
|
models = _model_has_pretrained.intersection(models) |
|
|
|
if name_matches_cfg: |
|
models = set(_model_pretrained_cfgs).intersection(models) |
|
|
|
return sorted(models, key=_natural_key) |
|
|
|
|
|
def list_pretrained( |
|
filter: Union[str, List[str]] = '', |
|
exclude_filters: str = '', |
|
) -> List[str]: |
|
return list_models( |
|
filter=filter, |
|
pretrained=True, |
|
exclude_filters=exclude_filters, |
|
include_tags=True, |
|
) |
|
|
|
|
|
def get_deprecated_models(module: str = '') -> Dict[str, str]: |
|
all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models |
|
return deepcopy(all_deprecated) |
|
|
|
|
|
def is_model(model_name: str) -> bool: |
|
""" Check if a model name exists |
|
""" |
|
arch_name = get_arch_name(model_name) |
|
return arch_name in _model_entrypoints |
|
|
|
|
|
def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]: |
|
"""Fetch a model entrypoint for specified model name |
|
""" |
|
arch_name = get_arch_name(model_name) |
|
if module_filter and arch_name not in _module_to_models.get(module_filter, {}): |
|
raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') |
|
return _model_entrypoints[arch_name] |
|
|
|
|
|
def list_modules() -> List[str]: |
|
""" Return list of module names that contain models / model entrypoints |
|
""" |
|
modules = _module_to_models.keys() |
|
return sorted(modules) |
|
|
|
|
|
def is_model_in_modules( |
|
model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]] |
|
) -> bool: |
|
"""Check if a model exists within a subset of modules |
|
|
|
Args: |
|
model_name - name of model to check |
|
module_names - names of modules to search in |
|
""" |
|
arch_name = get_arch_name(model_name) |
|
assert isinstance(module_names, (tuple, list, set)) |
|
return any(arch_name in _module_to_models[n] for n in module_names) |
|
|
|
|
|
def is_model_pretrained(model_name: str) -> bool: |
|
return model_name in _model_has_pretrained |
|
|
|
|
|
def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]: |
|
if model_name in _model_pretrained_cfgs: |
|
return deepcopy(_model_pretrained_cfgs[model_name]) |
|
arch_name, tag = split_model_name_tag(model_name) |
|
if arch_name in _model_default_cfgs: |
|
|
|
raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') |
|
if allow_unregistered: |
|
|
|
return None |
|
raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') |
|
|
|
|
|
def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: |
|
""" Get a specific model default_cfg value by key. None if key doesn't exist. |
|
""" |
|
cfg = get_pretrained_cfg(model_name, allow_unregistered=False) |
|
return getattr(cfg, cfg_key, None) |
|
|
|
|
|
def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]: |
|
""" Get all pretrained cfgs for a given architecture. |
|
""" |
|
arch_name, _ = split_model_name_tag(model_name) |
|
model_names = _model_with_tags[arch_name] |
|
cfgs = {m: _model_pretrained_cfgs[m] for m in model_names} |
|
return cfgs |
|
|