meg's picture
meg HF staff
Add files using upload-large-folder tool
ad283e4 verified
raw
history blame
19 kB
""" Bring-Your-Own-Attention Network
A flexible network w/ dataclass based config for stacking NN blocks including
self-attention (or similar) layers.
Currently used to implement experimental variants of:
* Bottleneck Transformers
* Lambda ResNets
* HaloNets
Consider all of the models definitions here as experimental WIP and likely to change.
Hacked together by / copyright Ross Wightman, 2021.
"""
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks
__all__ = []
model_cfgs = dict(
botnet26t=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
fixed_input_size=True,
self_attn_layer='bottleneck',
self_attn_kwargs=dict()
),
sebotnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
num_features=1280,
attn_layer='se',
self_attn_layer='bottleneck',
self_attn_kwargs=dict()
),
botnet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
fixed_input_size=True,
self_attn_layer='bottleneck',
self_attn_kwargs=dict()
),
eca_botnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
fixed_input_size=True,
act_layer='silu',
attn_layer='eca',
self_attn_layer='bottleneck',
self_attn_kwargs=dict(dim_head=16)
),
halonet_h1=ByoModelCfg(
blocks=(
ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0),
ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0),
ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0),
ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0),
),
stem_chs=64,
stem_type='7x7',
stem_pool='maxpool',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=3),
),
halonet26t=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=2)
),
sehalonet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
num_features=1280,
attn_layer='se',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=3)
),
halonet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
interleave_blocks(
types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25,
self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3, num_heads=4)),
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=3)
),
eca_halonext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='eca',
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16)
),
lambda_resnet26t=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
self_attn_layer='lambda',
self_attn_kwargs=dict(r=9)
),
lambda_resnet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
self_attn_layer='lambda',
self_attn_kwargs=dict(r=9)
),
lambda_resnet26rpt_256=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25),
interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25),
ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
self_attn_layer='lambda',
self_attn_kwargs=dict(r=None)
),
# experimental
haloregnetz_b=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3),
interleave_blocks(types=('bottle', 'self_attn'), every=3, d=12, c=192, s=2, gs=16, br=3),
ByoBlockCfg('self_attn', d=2, c=288, s=2, gs=16, br=3),
),
stem_chs=32,
stem_pool='',
downsample='',
num_features=1536,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
self_attn_layer='halo',
self_attn_kwargs=dict(block_size=7, halo_size=2, qk_ratio=0.33)
),
# experimental
lamhalobotnet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
interleave_blocks(
types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25,
self_attn_layer='lambda', self_attn_kwargs=dict(r=13)),
interleave_blocks(
types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25,
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)),
interleave_blocks(
types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25,
self_attn_layer='bottleneck', self_attn_kwargs=dict()),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
),
halo2botnet50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25),
interleave_blocks(
types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25,
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)),
interleave_blocks(
types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25,
self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)),
interleave_blocks(
types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25,
self_attn_layer='bottleneck', self_attn_kwargs=dict()),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
act_layer='silu',
),
)
def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs):
return build_model_with_cfg(
ByobNet, variant, pretrained,
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
feature_cfg=dict(flatten_sequential=True),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
'fixed_input_size': False, 'min_input_size': (3, 224, 224),
**kwargs
}
default_cfgs = generate_default_cfgs({
# GPU-Efficient (ResNet) weights
'botnet26t_256.c1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
'sebotnet33ts_256.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94),
'botnet50ts_256.untrained': _cfg(
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
'eca_botnext26ts_256.c1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_botnext26ts_c_256-95a898f6.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
'halonet_h1.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'halonet26t.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_a1h_256-3083328c.pth',
hf_hub_id='timm/',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)),
'sehalonet33ts.ra2_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth',
hf_hub_id='timm/',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'halonet50ts.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth',
hf_hub_id='timm/',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'eca_halonext26ts.c1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth',
hf_hub_id='timm/',
input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94),
'lambda_resnet26t.c1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26t_c_256-e5a5c857.pth',
hf_hub_id='timm/',
min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94),
'lambda_resnet50ts.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet50ts_a1h_256-b87370f7.pth',
hf_hub_id='timm/',
min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)),
'lambda_resnet26rpt_256.c1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26rpt_c_256-ab00292d.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94),
'haloregnetz_b.ra3_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/haloregnetz_c_raa_256-c8ad7616.pth',
hf_hub_id='timm/',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
first_conv='stem.conv', input_size=(3, 224, 224), pool_size=(7, 7), min_input_size=(3, 224, 224), crop_pct=0.94),
'lamhalobotnet50ts_256.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lamhalobotnet50ts_a1h2_256-fe3d9445.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
'halo2botnet50ts_256.a1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halo2botnet50ts_a1h2_256-fd9c11a3.pth',
hf_hub_id='timm/',
fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)),
})
@register_model
def botnet26t_256(pretrained=False, **kwargs) -> ByobNet:
""" Bottleneck Transformer w/ ResNet26-T backbone.
"""
kwargs.setdefault('img_size', 256)
return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs)
@register_model
def sebotnet33ts_256(pretrained=False, **kwargs) -> ByobNet:
""" Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU,
"""
return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs)
@register_model
def botnet50ts_256(pretrained=False, **kwargs) -> ByobNet:
""" Bottleneck Transformer w/ ResNet50-T backbone, silu act.
"""
kwargs.setdefault('img_size', 256)
return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs)
@register_model
def eca_botnext26ts_256(pretrained=False, **kwargs) -> ByobNet:
""" Bottleneck Transformer w/ ResNet26-T backbone, silu act.
"""
kwargs.setdefault('img_size', 256)
return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs)
@register_model
def halonet_h1(pretrained=False, **kwargs) -> ByobNet:
""" HaloNet-H1. Halo attention in all stages as per the paper.
NOTE: This runs very slowly!
"""
return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs)
@register_model
def halonet26t(pretrained=False, **kwargs) -> ByobNet:
""" HaloNet w/ a ResNet26-t backbone. Halo attention in final two stages
"""
return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs)
@register_model
def sehalonet33ts(pretrained=False, **kwargs) -> ByobNet:
""" HaloNet w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, 1-2 Halo in stage 2,3,4.
"""
return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs)
@register_model
def halonet50ts(pretrained=False, **kwargs) -> ByobNet:
""" HaloNet w/ a ResNet50-t backbone, silu act. Halo attention in final two stages
"""
return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs)
@register_model
def eca_halonext26ts(pretrained=False, **kwargs) -> ByobNet:
""" HaloNet w/ a ResNet26-t backbone, silu act. Halo attention in final two stages
"""
return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs)
@register_model
def lambda_resnet26t(pretrained=False, **kwargs) -> ByobNet:
""" Lambda-ResNet-26-T. Lambda layers w/ conv pos in last two stages.
"""
return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs)
@register_model
def lambda_resnet50ts(pretrained=False, **kwargs) -> ByobNet:
""" Lambda-ResNet-50-TS. SiLU act. Lambda layers w/ conv pos in last two stages.
"""
return _create_byoanet('lambda_resnet50ts', pretrained=pretrained, **kwargs)
@register_model
def lambda_resnet26rpt_256(pretrained=False, **kwargs) -> ByobNet:
""" Lambda-ResNet-26-R-T. Lambda layers w/ rel pos embed in last two stages.
"""
kwargs.setdefault('img_size', 256)
return _create_byoanet('lambda_resnet26rpt_256', pretrained=pretrained, **kwargs)
@register_model
def haloregnetz_b(pretrained=False, **kwargs) -> ByobNet:
""" Halo + RegNetZ
"""
return _create_byoanet('haloregnetz_b', pretrained=pretrained, **kwargs)
@register_model
def lamhalobotnet50ts_256(pretrained=False, **kwargs) -> ByobNet:
""" Combo Attention (Lambda + Halo + Bot) Network
"""
return _create_byoanet('lamhalobotnet50ts_256', 'lamhalobotnet50ts', pretrained=pretrained, **kwargs)
@register_model
def halo2botnet50ts_256(pretrained=False, **kwargs) -> ByobNet:
""" Combo Attention (Halo + Halo + Bot) Network
"""
return _create_byoanet('halo2botnet50ts_256', 'halo2botnet50ts', pretrained=pretrained, **kwargs)