|
""" EfficientViT (by MIT Song Han's Lab) |
|
|
|
Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` |
|
- https://arxiv.org/abs/2205.14756 |
|
|
|
Adapted from official impl at https://github.com/mit-han-lab/efficientvit |
|
""" |
|
|
|
__all__ = ['EfficientVit', 'EfficientVitLarge'] |
|
from typing import List, Optional |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import SelectAdaptivePool2d, create_conv2d, GELUTanh |
|
from ._builder import build_model_with_cfg |
|
from ._features_fx import register_notrace_module |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
|
|
def val2list(x: list or tuple or any, repeat_time=1): |
|
if isinstance(x, (list, tuple)): |
|
return list(x) |
|
return [x for _ in range(repeat_time)] |
|
|
|
|
|
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1): |
|
|
|
x = val2list(x) |
|
if len(x) > 0: |
|
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] |
|
|
|
return tuple(x) |
|
|
|
|
|
def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: |
|
if isinstance(kernel_size, tuple): |
|
return tuple([get_same_padding(ks) for ks in kernel_size]) |
|
else: |
|
assert kernel_size % 2 > 0, "kernel size should be odd number" |
|
return kernel_size // 2 |
|
|
|
|
|
class ConvNormAct(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size=3, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
dropout=0., |
|
norm_layer=nn.BatchNorm2d, |
|
act_layer=nn.ReLU, |
|
): |
|
super(ConvNormAct, self).__init__() |
|
self.dropout = nn.Dropout(dropout, inplace=False) |
|
self.conv = create_conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
) |
|
self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity() |
|
self.act = act_layer(inplace=True) if act_layer is not None else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.dropout(x) |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class DSConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size=3, |
|
stride=1, |
|
use_bias=False, |
|
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), |
|
act_layer=(nn.ReLU6, None), |
|
): |
|
super(DSConv, self).__init__() |
|
use_bias = val2tuple(use_bias, 2) |
|
norm_layer = val2tuple(norm_layer, 2) |
|
act_layer = val2tuple(act_layer, 2) |
|
|
|
self.depth_conv = ConvNormAct( |
|
in_channels, |
|
in_channels, |
|
kernel_size, |
|
stride, |
|
groups=in_channels, |
|
norm_layer=norm_layer[0], |
|
act_layer=act_layer[0], |
|
bias=use_bias[0], |
|
) |
|
self.point_conv = ConvNormAct( |
|
in_channels, |
|
out_channels, |
|
1, |
|
norm_layer=norm_layer[1], |
|
act_layer=act_layer[1], |
|
bias=use_bias[1], |
|
) |
|
|
|
def forward(self, x): |
|
x = self.depth_conv(x) |
|
x = self.point_conv(x) |
|
return x |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size=3, |
|
stride=1, |
|
mid_channels=None, |
|
expand_ratio=1, |
|
use_bias=False, |
|
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), |
|
act_layer=(nn.ReLU6, None), |
|
): |
|
super(ConvBlock, self).__init__() |
|
use_bias = val2tuple(use_bias, 2) |
|
norm_layer = val2tuple(norm_layer, 2) |
|
act_layer = val2tuple(act_layer, 2) |
|
mid_channels = mid_channels or round(in_channels * expand_ratio) |
|
|
|
self.conv1 = ConvNormAct( |
|
in_channels, |
|
mid_channels, |
|
kernel_size, |
|
stride, |
|
norm_layer=norm_layer[0], |
|
act_layer=act_layer[0], |
|
bias=use_bias[0], |
|
) |
|
self.conv2 = ConvNormAct( |
|
mid_channels, |
|
out_channels, |
|
kernel_size, |
|
1, |
|
norm_layer=norm_layer[1], |
|
act_layer=act_layer[1], |
|
bias=use_bias[1], |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class MBConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size=3, |
|
stride=1, |
|
mid_channels=None, |
|
expand_ratio=6, |
|
use_bias=False, |
|
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d), |
|
act_layer=(nn.ReLU6, nn.ReLU6, None), |
|
): |
|
super(MBConv, self).__init__() |
|
use_bias = val2tuple(use_bias, 3) |
|
norm_layer = val2tuple(norm_layer, 3) |
|
act_layer = val2tuple(act_layer, 3) |
|
mid_channels = mid_channels or round(in_channels * expand_ratio) |
|
|
|
self.inverted_conv = ConvNormAct( |
|
in_channels, |
|
mid_channels, |
|
1, |
|
stride=1, |
|
norm_layer=norm_layer[0], |
|
act_layer=act_layer[0], |
|
bias=use_bias[0], |
|
) |
|
self.depth_conv = ConvNormAct( |
|
mid_channels, |
|
mid_channels, |
|
kernel_size, |
|
stride=stride, |
|
groups=mid_channels, |
|
norm_layer=norm_layer[1], |
|
act_layer=act_layer[1], |
|
bias=use_bias[1], |
|
) |
|
self.point_conv = ConvNormAct( |
|
mid_channels, |
|
out_channels, |
|
1, |
|
norm_layer=norm_layer[2], |
|
act_layer=act_layer[2], |
|
bias=use_bias[2], |
|
) |
|
|
|
def forward(self, x): |
|
x = self.inverted_conv(x) |
|
x = self.depth_conv(x) |
|
x = self.point_conv(x) |
|
return x |
|
|
|
|
|
class FusedMBConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size=3, |
|
stride=1, |
|
mid_channels=None, |
|
expand_ratio=6, |
|
groups=1, |
|
use_bias=False, |
|
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), |
|
act_layer=(nn.ReLU6, None), |
|
): |
|
super(FusedMBConv, self).__init__() |
|
use_bias = val2tuple(use_bias, 2) |
|
norm_layer = val2tuple(norm_layer, 2) |
|
act_layer = val2tuple(act_layer, 2) |
|
mid_channels = mid_channels or round(in_channels * expand_ratio) |
|
|
|
self.spatial_conv = ConvNormAct( |
|
in_channels, |
|
mid_channels, |
|
kernel_size, |
|
stride=stride, |
|
groups=groups, |
|
norm_layer=norm_layer[0], |
|
act_layer=act_layer[0], |
|
bias=use_bias[0], |
|
) |
|
self.point_conv = ConvNormAct( |
|
mid_channels, |
|
out_channels, |
|
1, |
|
norm_layer=norm_layer[1], |
|
act_layer=act_layer[1], |
|
bias=use_bias[1], |
|
) |
|
|
|
def forward(self, x): |
|
x = self.spatial_conv(x) |
|
x = self.point_conv(x) |
|
return x |
|
|
|
|
|
class LiteMLA(nn.Module): |
|
"""Lightweight multi-scale linear attention""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
heads: int or None = None, |
|
heads_ratio: float = 1.0, |
|
dim=8, |
|
use_bias=False, |
|
norm_layer=(None, nn.BatchNorm2d), |
|
act_layer=(None, None), |
|
kernel_func=nn.ReLU, |
|
scales=(5,), |
|
eps=1e-5, |
|
): |
|
super(LiteMLA, self).__init__() |
|
self.eps = eps |
|
heads = heads or int(in_channels // dim * heads_ratio) |
|
total_dim = heads * dim |
|
use_bias = val2tuple(use_bias, 2) |
|
norm_layer = val2tuple(norm_layer, 2) |
|
act_layer = val2tuple(act_layer, 2) |
|
|
|
self.dim = dim |
|
self.qkv = ConvNormAct( |
|
in_channels, |
|
3 * total_dim, |
|
1, |
|
bias=use_bias[0], |
|
norm_layer=norm_layer[0], |
|
act_layer=act_layer[0], |
|
) |
|
self.aggreg = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Conv2d( |
|
3 * total_dim, |
|
3 * total_dim, |
|
scale, |
|
padding=get_same_padding(scale), |
|
groups=3 * total_dim, |
|
bias=use_bias[0], |
|
), |
|
nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]), |
|
) |
|
for scale in scales |
|
]) |
|
self.kernel_func = kernel_func(inplace=False) |
|
|
|
self.proj = ConvNormAct( |
|
total_dim * (1 + len(scales)), |
|
out_channels, |
|
1, |
|
bias=use_bias[1], |
|
norm_layer=norm_layer[1], |
|
act_layer=act_layer[1], |
|
) |
|
|
|
def _attn(self, q, k, v): |
|
dtype = v.dtype |
|
q, k, v = q.float(), k.float(), v.float() |
|
kv = k.transpose(-1, -2) @ v |
|
out = q @ kv |
|
out = out[..., :-1] / (out[..., -1:] + self.eps) |
|
return out.to(dtype) |
|
|
|
def forward(self, x): |
|
B, _, H, W = x.shape |
|
|
|
|
|
qkv = self.qkv(x) |
|
multi_scale_qkv = [qkv] |
|
for op in self.aggreg: |
|
multi_scale_qkv.append(op(qkv)) |
|
multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1) |
|
multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2) |
|
q, k, v = multi_scale_qkv.chunk(3, dim=-1) |
|
|
|
|
|
q = self.kernel_func(q) |
|
k = self.kernel_func(k) |
|
v = F.pad(v, (0, 1), mode="constant", value=1.) |
|
|
|
if not torch.jit.is_scripting(): |
|
with torch.autocast(device_type=v.device.type, enabled=False): |
|
out = self._attn(q, k, v) |
|
else: |
|
out = self._attn(q, k, v) |
|
|
|
|
|
out = out.transpose(-1, -2).reshape(B, -1, H, W) |
|
out = self.proj(out) |
|
return out |
|
|
|
|
|
register_notrace_module(LiteMLA) |
|
|
|
|
|
class EfficientVitBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
heads_ratio=1.0, |
|
head_dim=32, |
|
expand_ratio=4, |
|
norm_layer=nn.BatchNorm2d, |
|
act_layer=nn.Hardswish, |
|
): |
|
super(EfficientVitBlock, self).__init__() |
|
self.context_module = ResidualBlock( |
|
LiteMLA( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
heads_ratio=heads_ratio, |
|
dim=head_dim, |
|
norm_layer=(None, norm_layer), |
|
), |
|
nn.Identity(), |
|
) |
|
self.local_module = ResidualBlock( |
|
MBConv( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
expand_ratio=expand_ratio, |
|
use_bias=(True, True, False), |
|
norm_layer=(None, None, norm_layer), |
|
act_layer=(act_layer, act_layer, None), |
|
), |
|
nn.Identity(), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.context_module(x) |
|
x = self.local_module(x) |
|
return x |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__( |
|
self, |
|
main: Optional[nn.Module], |
|
shortcut: Optional[nn.Module] = None, |
|
pre_norm: Optional[nn.Module] = None, |
|
): |
|
super(ResidualBlock, self).__init__() |
|
self.pre_norm = pre_norm if pre_norm is not None else nn.Identity() |
|
self.main = main |
|
self.shortcut = shortcut |
|
|
|
def forward(self, x): |
|
res = self.main(self.pre_norm(x)) |
|
if self.shortcut is not None: |
|
res = res + self.shortcut(x) |
|
return res |
|
|
|
|
|
def build_local_block( |
|
in_channels: int, |
|
out_channels: int, |
|
stride: int, |
|
expand_ratio: float, |
|
norm_layer: str, |
|
act_layer: str, |
|
fewer_norm: bool = False, |
|
block_type: str = "default", |
|
): |
|
assert block_type in ["default", "large", "fused"] |
|
if expand_ratio == 1: |
|
if block_type == "default": |
|
block = DSConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
use_bias=(True, False) if fewer_norm else False, |
|
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, |
|
act_layer=(act_layer, None), |
|
) |
|
else: |
|
block = ConvBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
use_bias=(True, False) if fewer_norm else False, |
|
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, |
|
act_layer=(act_layer, None), |
|
) |
|
else: |
|
if block_type == "default": |
|
block = MBConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
expand_ratio=expand_ratio, |
|
use_bias=(True, True, False) if fewer_norm else False, |
|
norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer, |
|
act_layer=(act_layer, act_layer, None), |
|
) |
|
else: |
|
block = FusedMBConv( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
stride=stride, |
|
expand_ratio=expand_ratio, |
|
use_bias=(True, False) if fewer_norm else False, |
|
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, |
|
act_layer=(act_layer, None), |
|
) |
|
return block |
|
|
|
|
|
class Stem(nn.Sequential): |
|
def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, block_type='default'): |
|
super().__init__() |
|
self.stride = 2 |
|
|
|
self.add_module( |
|
'in_conv', |
|
ConvNormAct( |
|
in_chs, out_chs, |
|
kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer, |
|
) |
|
) |
|
stem_block = 0 |
|
for _ in range(depth): |
|
self.add_module(f'res{stem_block}', ResidualBlock( |
|
build_local_block( |
|
in_channels=out_chs, |
|
out_channels=out_chs, |
|
stride=1, |
|
expand_ratio=1, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
block_type=block_type, |
|
), |
|
nn.Identity(), |
|
)) |
|
stem_block += 1 |
|
|
|
|
|
class EfficientVitStage(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
depth, |
|
norm_layer, |
|
act_layer, |
|
expand_ratio, |
|
head_dim, |
|
vit_stage=False, |
|
): |
|
super(EfficientVitStage, self).__init__() |
|
blocks = [ResidualBlock( |
|
build_local_block( |
|
in_channels=in_chs, |
|
out_channels=out_chs, |
|
stride=2, |
|
expand_ratio=expand_ratio, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
fewer_norm=vit_stage, |
|
), |
|
None, |
|
)] |
|
in_chs = out_chs |
|
|
|
if vit_stage: |
|
|
|
for _ in range(depth): |
|
blocks.append( |
|
EfficientVitBlock( |
|
in_channels=in_chs, |
|
head_dim=head_dim, |
|
expand_ratio=expand_ratio, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
) |
|
) |
|
else: |
|
|
|
for i in range(1, depth): |
|
blocks.append(ResidualBlock( |
|
build_local_block( |
|
in_channels=in_chs, |
|
out_channels=out_chs, |
|
stride=1, |
|
expand_ratio=expand_ratio, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer |
|
), |
|
nn.Identity(), |
|
)) |
|
|
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
return self.blocks(x) |
|
|
|
|
|
class EfficientVitLargeStage(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
depth, |
|
norm_layer, |
|
act_layer, |
|
head_dim, |
|
vit_stage=False, |
|
fewer_norm=False, |
|
): |
|
super(EfficientVitLargeStage, self).__init__() |
|
blocks = [ResidualBlock( |
|
build_local_block( |
|
in_channels=in_chs, |
|
out_channels=out_chs, |
|
stride=2, |
|
expand_ratio=24 if vit_stage else 16, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
fewer_norm=vit_stage or fewer_norm, |
|
block_type='default' if fewer_norm else 'fused', |
|
), |
|
None, |
|
)] |
|
in_chs = out_chs |
|
|
|
if vit_stage: |
|
|
|
for _ in range(depth): |
|
blocks.append( |
|
EfficientVitBlock( |
|
in_channels=in_chs, |
|
head_dim=head_dim, |
|
expand_ratio=6, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
) |
|
) |
|
else: |
|
|
|
for i in range(depth): |
|
blocks.append(ResidualBlock( |
|
build_local_block( |
|
in_channels=in_chs, |
|
out_channels=out_chs, |
|
stride=1, |
|
expand_ratio=4, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
fewer_norm=fewer_norm, |
|
block_type='default' if fewer_norm else 'fused', |
|
), |
|
nn.Identity(), |
|
)) |
|
|
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
return self.blocks(x) |
|
|
|
|
|
class ClassifierHead(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
widths: List[int], |
|
num_classes: int = 1000, |
|
dropout: float = 0., |
|
norm_layer=nn.BatchNorm2d, |
|
act_layer=nn.Hardswish, |
|
pool_type: str = 'avg', |
|
norm_eps: float = 1e-5, |
|
): |
|
super(ClassifierHead, self).__init__() |
|
self.widths = widths |
|
self.num_features = widths[-1] |
|
|
|
assert pool_type, 'Cannot disable pooling' |
|
self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer) |
|
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) |
|
self.classifier = nn.Sequential( |
|
nn.Linear(widths[0], widths[1], bias=False), |
|
nn.LayerNorm(widths[1], eps=norm_eps), |
|
act_layer(inplace=True) if act_layer is not None else nn.Identity(), |
|
nn.Dropout(dropout, inplace=False), |
|
nn.Linear(widths[1], num_classes, bias=True) if num_classes > 0 else nn.Identity(), |
|
) |
|
|
|
def reset(self, num_classes: int, pool_type: Optional[str] = None): |
|
if pool_type is not None: |
|
assert pool_type, 'Cannot disable pooling' |
|
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True,) |
|
if num_classes > 0: |
|
self.classifier[-1] = nn.Linear(self.num_features, num_classes, bias=True) |
|
else: |
|
self.classifier[-1] = nn.Identity() |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
x = self.in_conv(x) |
|
x = self.global_pool(x) |
|
if pre_logits: |
|
|
|
x = self.classifier[0](x) |
|
x = self.classifier[1](x) |
|
x = self.classifier[2](x) |
|
x = self.classifier[3](x) |
|
else: |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
class EfficientVit(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans=3, |
|
widths=(), |
|
depths=(), |
|
head_dim=32, |
|
expand_ratio=4, |
|
norm_layer=nn.BatchNorm2d, |
|
act_layer=nn.Hardswish, |
|
global_pool='avg', |
|
head_widths=(), |
|
drop_rate=0.0, |
|
num_classes=1000, |
|
): |
|
super(EfficientVit, self).__init__() |
|
self.grad_checkpointing = False |
|
self.global_pool = global_pool |
|
self.num_classes = num_classes |
|
|
|
|
|
self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer) |
|
stride = self.stem.stride |
|
|
|
|
|
self.feature_info = [] |
|
self.stages = nn.Sequential() |
|
in_channels = widths[0] |
|
for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): |
|
self.stages.append(EfficientVitStage( |
|
in_channels, |
|
w, |
|
depth=d, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
expand_ratio=expand_ratio, |
|
head_dim=head_dim, |
|
vit_stage=i >= 2, |
|
)) |
|
stride *= 2 |
|
in_channels = w |
|
self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] |
|
|
|
self.num_features = in_channels |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
widths=head_widths, |
|
num_classes=num_classes, |
|
dropout=drop_rate, |
|
pool_type=self.global_pool, |
|
) |
|
self.head_hidden_size = self.head.num_features |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+).downsample', (0,)), |
|
(r'^stages\.(\d+)\.\w+\.(\d+)', None), |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.classifier[-1] |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.stages, x) |
|
else: |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
class EfficientVitLarge(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans=3, |
|
widths=(), |
|
depths=(), |
|
head_dim=32, |
|
norm_layer=nn.BatchNorm2d, |
|
act_layer=GELUTanh, |
|
global_pool='avg', |
|
head_widths=(), |
|
drop_rate=0.0, |
|
num_classes=1000, |
|
norm_eps=1e-7, |
|
): |
|
super(EfficientVitLarge, self).__init__() |
|
self.grad_checkpointing = False |
|
self.global_pool = global_pool |
|
self.num_classes = num_classes |
|
self.norm_eps = norm_eps |
|
norm_layer = partial(norm_layer, eps=self.norm_eps) |
|
|
|
|
|
self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer, block_type='large') |
|
stride = self.stem.stride |
|
|
|
|
|
self.feature_info = [] |
|
self.stages = nn.Sequential() |
|
in_channels = widths[0] |
|
for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): |
|
self.stages.append(EfficientVitLargeStage( |
|
in_channels, |
|
w, |
|
depth=d, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
head_dim=head_dim, |
|
vit_stage=i >= 3, |
|
fewer_norm=i >= 2, |
|
)) |
|
stride *= 2 |
|
in_channels = w |
|
self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] |
|
|
|
self.num_features = in_channels |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
widths=head_widths, |
|
num_classes=num_classes, |
|
dropout=drop_rate, |
|
pool_type=self.global_pool, |
|
act_layer=act_layer, |
|
norm_eps=self.norm_eps, |
|
) |
|
self.head_hidden_size = self.head.num_features |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+).downsample', (0,)), |
|
(r'^stages\.(\d+)\.\w+\.(\d+)', None), |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.classifier[-1] |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.stages, x) |
|
else: |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, |
|
'mean': IMAGENET_DEFAULT_MEAN, |
|
'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.in_conv.conv', |
|
'classifier': 'head.classifier.4', |
|
'crop_pct': 0.95, |
|
'input_size': (3, 224, 224), |
|
'pool_size': (7, 7), |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'efficientvit_b0.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientvit_b1.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientvit_b1.r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, |
|
), |
|
'efficientvit_b1.r288_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, |
|
), |
|
'efficientvit_b2.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientvit_b2.r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, |
|
), |
|
'efficientvit_b2.r288_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, |
|
), |
|
'efficientvit_b3.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'efficientvit_b3.r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, |
|
), |
|
'efficientvit_b3.r288_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, |
|
), |
|
'efficientvit_l1.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=1.0, |
|
), |
|
'efficientvit_l2.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=1.0, |
|
), |
|
'efficientvit_l2.r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, |
|
), |
|
'efficientvit_l2.r288_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, |
|
), |
|
'efficientvit_l2.r384_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, |
|
), |
|
'efficientvit_l3.r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=1.0, |
|
), |
|
'efficientvit_l3.r256_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, |
|
), |
|
'efficientvit_l3.r320_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, |
|
), |
|
'efficientvit_l3.r384_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}) |
|
|
|
|
|
def _create_efficientvit(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) |
|
model = build_model_with_cfg( |
|
EfficientVit, |
|
variant, |
|
pretrained, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def _create_efficientvit_large(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) |
|
model = build_model_with_cfg( |
|
EfficientVitLarge, |
|
variant, |
|
pretrained, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientvit_b0(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280)) |
|
return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_b1(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600)) |
|
return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_b2(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560)) |
|
return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_b3(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560)) |
|
return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_l1(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, head_widths=(3072, 3200)) |
|
return _create_efficientvit_large('efficientvit_l1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_l2(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(3072, 3200)) |
|
return _create_efficientvit_large('efficientvit_l2', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def efficientvit_l3(pretrained=False, **kwargs): |
|
model_args = dict( |
|
widths=(64, 128, 256, 512, 1024), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(6144, 6400)) |
|
return _create_efficientvit_large('efficientvit_l3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|