|
""" Optimizer Factory w/ custom Weight Decay & Layer Decay support |
|
|
|
Hacked together by / Copyright 2021 Ross Wightman |
|
""" |
|
import logging |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union |
|
from fnmatch import fnmatch |
|
import importlib |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim |
|
|
|
from ._param_groups import param_groups_layer_decay, param_groups_weight_decay |
|
from ._types import ParamsT, OptimType, OptimizerCallable |
|
from .adabelief import AdaBelief |
|
from .adafactor import Adafactor |
|
from .adafactor_bv import AdafactorBigVision |
|
from .adahessian import Adahessian |
|
from .adamp import AdamP |
|
from .adamw import AdamWLegacy |
|
from .adan import Adan |
|
from .adopt import Adopt |
|
from .lamb import Lamb |
|
from .laprop import LaProp |
|
from .lars import Lars |
|
from .lion import Lion |
|
from .lookahead import Lookahead |
|
from .madgrad import MADGRAD |
|
from .mars import Mars |
|
from .nadam import NAdamLegacy |
|
from .nadamw import NAdamW |
|
from .nvnovograd import NvNovoGrad |
|
from .radam import RAdamLegacy |
|
from .rmsprop_tf import RMSpropTF |
|
from .sgdp import SGDP |
|
from .sgdw import SGDW |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def _import_class(class_string: str) -> Type: |
|
"""Dynamically import a class from a string.""" |
|
try: |
|
module_name, class_name = class_string.rsplit(".", 1) |
|
module = importlib.import_module(module_name) |
|
return getattr(module, class_name) |
|
except (ImportError, AttributeError) as e: |
|
raise ImportError(f"Could not import {class_string}: {e}") |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class OptimInfo: |
|
"""Immutable configuration for an optimizer. |
|
|
|
Attributes: |
|
name: Unique identifier for the optimizer |
|
opt_class: The optimizer class |
|
description: Brief description of the optimizer's characteristics and behavior |
|
has_eps: Whether the optimizer accepts epsilon parameter |
|
has_momentum: Whether the optimizer accepts momentum parameter |
|
has_betas: Whether the optimizer accepts a tuple of beta parameters |
|
num_betas: number of betas in tuple (valid IFF has_betas = True) |
|
defaults: Optional default parameters for the optimizer |
|
""" |
|
name: str |
|
opt_class: Union[str, OptimType] |
|
description: str = '' |
|
has_eps: bool = True |
|
has_momentum: bool = False |
|
has_betas: bool = False |
|
num_betas: int = 2 |
|
second_order: bool = False |
|
defaults: Optional[Dict[str, Any]] = None |
|
|
|
|
|
class OptimizerRegistry: |
|
"""Registry managing optimizer configurations and instantiation. |
|
|
|
This class provides a central registry for optimizer configurations and handles |
|
their instantiation with appropriate parameter groups and settings. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
self._optimizers: Dict[str, OptimInfo] = {} |
|
self._foreach_defaults: Set[str] = {'lion'} |
|
|
|
def register(self, info: OptimInfo) -> None: |
|
"""Register an optimizer configuration. |
|
|
|
Args: |
|
info: The OptimInfo configuration containing name, type and description |
|
""" |
|
name = info.name.lower() |
|
if name in self._optimizers: |
|
_logger.warning(f'Optimizer {name} already registered, overwriting') |
|
self._optimizers[name] = info |
|
|
|
def register_alias(self, alias: str, target: str) -> None: |
|
"""Register an alias for an existing optimizer. |
|
|
|
Args: |
|
alias: The alias name |
|
target: The target optimizer name |
|
|
|
Raises: |
|
KeyError: If target optimizer doesn't exist |
|
""" |
|
target = target.lower() |
|
if target not in self._optimizers: |
|
raise KeyError(f'Cannot create alias for non-existent optimizer {target}') |
|
self._optimizers[alias.lower()] = self._optimizers[target] |
|
|
|
def register_foreach_default(self, name: str) -> None: |
|
"""Register an optimizer as defaulting to foreach=True.""" |
|
self._foreach_defaults.add(name.lower()) |
|
|
|
def list_optimizers( |
|
self, |
|
filter: Union[str, List[str]] = '', |
|
exclude_filters: Optional[List[str]] = None, |
|
with_description: bool = False |
|
) -> List[Union[str, Tuple[str, str]]]: |
|
"""List available optimizer names, optionally filtered. |
|
|
|
Args: |
|
filter: Wildcard style filter string (e.g., 'adam*') |
|
exclude_filters: Optional list of wildcard patterns to exclude |
|
with_description: If True, return tuples of (name, description) |
|
|
|
Returns: |
|
List of either optimizer names or (name, description) tuples |
|
""" |
|
names = sorted(self._optimizers.keys()) |
|
|
|
if filter: |
|
if isinstance(filter, str): |
|
filters = [filter] |
|
else: |
|
filters = filter |
|
filtered_names = set() |
|
for f in filters: |
|
filtered_names.update(n for n in names if fnmatch(n, f)) |
|
names = sorted(filtered_names) |
|
|
|
if exclude_filters: |
|
for exclude_filter in exclude_filters: |
|
names = [n for n in names if not fnmatch(n, exclude_filter)] |
|
|
|
if with_description: |
|
return [(name, self._optimizers[name].description) for name in names] |
|
|
|
return names |
|
|
|
def get_optimizer_info(self, name: str) -> OptimInfo: |
|
"""Get the OptimInfo for an optimizer. |
|
|
|
Args: |
|
name: Name of the optimizer |
|
|
|
Returns: |
|
OptimInfo configuration |
|
|
|
Raises: |
|
ValueError: If optimizer is not found |
|
""" |
|
name = name.lower() |
|
if name not in self._optimizers: |
|
raise ValueError(f'Optimizer {name} not found in registry') |
|
return self._optimizers[name] |
|
|
|
def get_optimizer_class( |
|
self, |
|
name_or_info: Union[str, OptimInfo], |
|
bind_defaults: bool = True, |
|
) -> Union[OptimType, OptimizerCallable]: |
|
"""Get the optimizer class with any default arguments applied. |
|
|
|
This allows direct instantiation of optimizers with their default configs |
|
without going through the full factory. |
|
|
|
Args: |
|
name_or_info: Name of the optimizer |
|
bind_defaults: Bind default arguments to optimizer class via `partial` before returning |
|
|
|
Returns: |
|
Optimizer class or partial with defaults applied |
|
|
|
Raises: |
|
ValueError: If optimizer not found |
|
""" |
|
if isinstance(name_or_info, str): |
|
opt_info = self.get_optimizer_info(name_or_info) |
|
else: |
|
assert isinstance(name_or_info, OptimInfo) |
|
opt_info = name_or_info |
|
|
|
if isinstance(opt_info.opt_class, str): |
|
|
|
if opt_info.opt_class.startswith('apex.'): |
|
assert torch.cuda.is_available(), 'CUDA required for APEX optimizers' |
|
try: |
|
opt_class = _import_class(opt_info.opt_class) |
|
except ImportError as e: |
|
raise ImportError('APEX optimizers require apex to be installed') from e |
|
elif opt_info.opt_class.startswith('bitsandbytes.'): |
|
assert torch.cuda.is_available(), 'CUDA required for bitsandbytes optimizers' |
|
try: |
|
opt_class = _import_class(opt_info.opt_class) |
|
except ImportError as e: |
|
raise ImportError('bitsandbytes optimizers require bitsandbytes to be installed') from e |
|
else: |
|
opt_class = _import_class(opt_info.opt_class) |
|
else: |
|
opt_class = opt_info.opt_class |
|
|
|
|
|
if bind_defaults and opt_info.defaults: |
|
opt_class = partial(opt_class, **opt_info.defaults) |
|
|
|
return opt_class |
|
|
|
def create_optimizer( |
|
self, |
|
model_or_params: Union[nn.Module, ParamsT], |
|
opt: str, |
|
lr: Optional[float] = None, |
|
weight_decay: float = 0., |
|
momentum: float = 0.9, |
|
foreach: Optional[bool] = None, |
|
weight_decay_exclude_1d: bool = True, |
|
layer_decay: Optional[float] = None, |
|
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None, |
|
**kwargs: Any, |
|
) -> torch.optim.Optimizer: |
|
"""Create an optimizer instance. |
|
|
|
Args: |
|
model_or_params: Model or parameters to optimize |
|
opt: Name of optimizer to create |
|
lr: Learning rate |
|
weight_decay: Weight decay factor |
|
momentum: Momentum factor for applicable optimizers |
|
foreach: Enable/disable foreach operation |
|
weight_decay_exclude_1d: Whether to skip weight decay for 1d params (biases and norm affine) |
|
layer_decay: Layer-wise learning rate decay |
|
param_group_fn: Optional custom parameter grouping function |
|
**kwargs: Additional optimizer-specific arguments |
|
|
|
Returns: |
|
Configured optimizer instance |
|
|
|
Raises: |
|
ValueError: If optimizer not found or configuration invalid |
|
""" |
|
|
|
|
|
if isinstance(model_or_params, nn.Module): |
|
|
|
no_weight_decay = getattr(model_or_params, 'no_weight_decay', lambda: set())() |
|
|
|
if param_group_fn: |
|
|
|
params = param_group_fn(model_or_params) |
|
elif layer_decay is not None: |
|
params = param_groups_layer_decay( |
|
model_or_params, |
|
weight_decay=weight_decay, |
|
layer_decay=layer_decay, |
|
no_weight_decay_list=no_weight_decay, |
|
weight_decay_exclude_1d=weight_decay_exclude_1d, |
|
) |
|
weight_decay = 0. |
|
elif weight_decay and weight_decay_exclude_1d: |
|
params = param_groups_weight_decay( |
|
model_or_params, |
|
weight_decay=weight_decay, |
|
no_weight_decay_list=no_weight_decay, |
|
) |
|
weight_decay = 0. |
|
else: |
|
params = model_or_params.parameters() |
|
else: |
|
|
|
params = model_or_params |
|
|
|
|
|
opt_split = opt.lower().split('_') |
|
opt_name = opt_split[-1] |
|
use_lookahead = opt_split[0] == 'lookahead' if len(opt_split) > 1 else False |
|
|
|
opt_info = self.get_optimizer_info(opt_name) |
|
|
|
|
|
opt_args: Dict[str, Any] = {'weight_decay': weight_decay, **kwargs} |
|
|
|
|
|
if lr is not None: |
|
opt_args['lr'] = lr |
|
|
|
|
|
if opt_info.defaults: |
|
for k, v in opt_info.defaults.items(): |
|
opt_args.setdefault(k, v) |
|
|
|
|
|
if opt_info.has_momentum: |
|
opt_args.setdefault('momentum', momentum) |
|
|
|
|
|
if not opt_info.has_eps: |
|
opt_args.pop('eps', None) |
|
if not opt_info.has_betas: |
|
opt_args.pop('betas', None) |
|
|
|
if foreach is not None: |
|
|
|
|
|
|
|
opt_args.setdefault('foreach', foreach) |
|
|
|
|
|
opt_class = self.get_optimizer_class(opt_info, bind_defaults=False) |
|
optimizer = opt_class(params, **opt_args) |
|
|
|
|
|
if use_lookahead: |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|
|
|
|
def _register_sgd_variants(registry: OptimizerRegistry) -> None: |
|
"""Register SGD-based optimizers""" |
|
sgd_optimizers = [ |
|
OptimInfo( |
|
name='sgd', |
|
opt_class=torch.optim.SGD, |
|
description='torch.Optim Stochastic Gradient Descent (SGD) with Nesterov momentum', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='momentum', |
|
opt_class=torch.optim.SGD, |
|
description='torch.Optim Stochastic Gradient Descent (SGD) with classical momentum', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': False} |
|
), |
|
OptimInfo( |
|
name='sgdp', |
|
opt_class=SGDP, |
|
description='SGD with built-in projection to unit norm sphere', |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='sgdw', |
|
opt_class=SGDW, |
|
description='SGD with decoupled weight decay and Nesterov momentum', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
] |
|
for opt in sgd_optimizers: |
|
registry.register(opt) |
|
|
|
|
|
def _register_adam_variants(registry: OptimizerRegistry) -> None: |
|
"""Register Adam-based optimizers""" |
|
adam_optimizers = [ |
|
OptimInfo( |
|
name='adam', |
|
opt_class=torch.optim.Adam, |
|
description='torch.optim.Adam, Adaptive Moment Estimation', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='adamw', |
|
opt_class=torch.optim.AdamW, |
|
description='torch.optim.AdamW, Adam with decoupled weight decay', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='adamwlegacy', |
|
opt_class=AdamWLegacy, |
|
description='legacy impl of AdamW that pre-dates inclusion to torch.optim', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='adamp', |
|
opt_class=AdamP, |
|
description='Adam with built-in projection to unit norm sphere', |
|
has_betas=True, |
|
defaults={'wd_ratio': 0.01, 'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='nadam', |
|
opt_class=torch.optim.NAdam, |
|
description='torch.optim.NAdam, Adam with Nesterov momentum', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='nadamlegacy', |
|
opt_class=NAdamLegacy, |
|
description='legacy impl of NAdam that pre-dates inclusion in torch.optim', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='nadamw', |
|
opt_class=NAdamW, |
|
description='Adam with Nesterov momentum and decoupled weight decay, mlcommons/algorithmic-efficiency impl', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='radam', |
|
opt_class=torch.optim.RAdam, |
|
description='torch.optim.RAdam, Rectified Adam with variance adaptation', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='radamlegacy', |
|
opt_class=RAdamLegacy, |
|
description='legacy impl of RAdam that predates inclusion in torch.optim', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='radamw', |
|
opt_class=torch.optim.RAdam, |
|
description='torch.optim.RAdamW, Rectified Adam with variance adaptation and decoupled weight decay', |
|
has_betas=True, |
|
defaults={'decoupled_weight_decay': True} |
|
), |
|
OptimInfo( |
|
name='adamax', |
|
opt_class=torch.optim.Adamax, |
|
description='torch.optim.Adamax, Adam with infinity norm for more stable updates', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='adafactor', |
|
opt_class=Adafactor, |
|
description='Memory-efficient implementation of Adam with factored gradients', |
|
), |
|
OptimInfo( |
|
name='adafactorbv', |
|
opt_class=AdafactorBigVision, |
|
description='Big Vision variant of Adafactor with factored gradients, half precision momentum', |
|
), |
|
OptimInfo( |
|
name='adopt', |
|
opt_class=Adopt, |
|
description='Modified Adam that can converge with any β2 with the optimal rate', |
|
), |
|
OptimInfo( |
|
name='adoptw', |
|
opt_class=Adopt, |
|
description='Modified AdamW (decoupled decay) that can converge with any β2 with the optimal rate', |
|
defaults={'decoupled': True} |
|
), |
|
] |
|
for opt in adam_optimizers: |
|
registry.register(opt) |
|
|
|
|
|
def _register_lamb_lars(registry: OptimizerRegistry) -> None: |
|
"""Register LAMB and LARS variants""" |
|
lamb_lars_optimizers = [ |
|
OptimInfo( |
|
name='lamb', |
|
opt_class=Lamb, |
|
description='Layer-wise Adaptive Moments for batch optimization', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='lambc', |
|
opt_class=Lamb, |
|
description='LAMB with trust ratio clipping for stability', |
|
has_betas=True, |
|
defaults={'trust_clip': True} |
|
), |
|
OptimInfo( |
|
name='lars', |
|
opt_class=Lars, |
|
description='Layer-wise Adaptive Rate Scaling', |
|
has_momentum=True |
|
), |
|
OptimInfo( |
|
name='larc', |
|
opt_class=Lars, |
|
description='LARS with trust ratio clipping for stability', |
|
has_momentum=True, |
|
defaults={'trust_clip': True} |
|
), |
|
OptimInfo( |
|
name='nlars', |
|
opt_class=Lars, |
|
description='LARS with Nesterov momentum', |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='nlarc', |
|
opt_class=Lars, |
|
description='LARS with Nesterov momentum & trust ratio clipping', |
|
has_momentum=True, |
|
defaults={'nesterov': True, 'trust_clip': True} |
|
), |
|
] |
|
for opt in lamb_lars_optimizers: |
|
registry.register(opt) |
|
|
|
|
|
def _register_cautious_optimizers(registry: OptimizerRegistry) -> None: |
|
cautious_optimizers = [ |
|
OptimInfo( |
|
name='cadafactor', |
|
opt_class=Adafactor, |
|
description='Cautious Adafactor', |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='cadafactorbv', |
|
opt_class=AdafactorBigVision, |
|
description='Cautious Big Vision Adafactor', |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='cadamw', |
|
opt_class=AdamWLegacy, |
|
description='Cautious AdamW', |
|
has_betas=True, |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='cadopt', |
|
opt_class=Adopt, |
|
description='Cautious Adopt', |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='cadoptw', |
|
opt_class=Adopt, |
|
description='Cautious AdoptW (decoupled decay)', |
|
defaults={'decoupled': True, 'caution': True} |
|
), |
|
OptimInfo( |
|
name='clamb', |
|
opt_class=Lamb, |
|
description='Cautious LAMB', |
|
has_betas=True, |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='claprop', |
|
opt_class=LaProp, |
|
description='Cautious LaProp', |
|
has_betas=True, |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='clion', |
|
opt_class=Lion, |
|
description='Cautious Lion', |
|
has_eps=False, |
|
has_betas=True, |
|
defaults = {'caution': True} |
|
), |
|
OptimInfo( |
|
name='cmars', |
|
opt_class=Mars, |
|
description='Cautious MARS', |
|
has_betas=True, |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='cnadamw', |
|
opt_class=NAdamW, |
|
description='Cautious NAdamW', |
|
has_betas=True, |
|
defaults={'caution': True} |
|
), |
|
OptimInfo( |
|
name='crmsproptf', |
|
opt_class=RMSpropTF, |
|
description='Cautious TensorFlow-style RMSprop', |
|
has_momentum=True, |
|
defaults={'alpha': 0.9, 'caution': True} |
|
), |
|
OptimInfo( |
|
name='csgdw', |
|
opt_class=SGDW, |
|
description='Cautious SGD with decoupled weight decay and Nesterov momentum', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True, 'caution': True} |
|
), |
|
] |
|
for opt in cautious_optimizers: |
|
registry.register(opt) |
|
|
|
def _register_other_optimizers(registry: OptimizerRegistry) -> None: |
|
"""Register miscellaneous optimizers""" |
|
other_optimizers = [ |
|
OptimInfo( |
|
name='adabelief', |
|
opt_class=AdaBelief, |
|
description='Adapts learning rate based on gradient prediction error', |
|
has_betas=True, |
|
defaults={'rectify': False} |
|
), |
|
OptimInfo( |
|
name='radabelief', |
|
opt_class=AdaBelief, |
|
description='Rectified AdaBelief with variance adaptation', |
|
has_betas=True, |
|
defaults={'rectify': True} |
|
), |
|
OptimInfo( |
|
name='adadelta', |
|
opt_class=torch.optim.Adadelta, |
|
description='torch.optim.Adadelta, Adapts learning rates based on running windows of gradients' |
|
), |
|
OptimInfo( |
|
name='adagrad', |
|
opt_class=torch.optim.Adagrad, |
|
description='torch.optim.Adagrad, Adapts learning rates using cumulative squared gradients', |
|
defaults={'eps': 1e-8} |
|
), |
|
OptimInfo( |
|
name='adan', |
|
opt_class=Adan, |
|
description='Adaptive Nesterov Momentum Algorithm', |
|
defaults={'no_prox': False}, |
|
has_betas=True, |
|
num_betas=3 |
|
), |
|
OptimInfo( |
|
name='adanw', |
|
opt_class=Adan, |
|
description='Adaptive Nesterov Momentum with decoupled weight decay', |
|
defaults={'no_prox': True}, |
|
has_betas=True, |
|
num_betas=3 |
|
), |
|
OptimInfo( |
|
name='adahessian', |
|
opt_class=Adahessian, |
|
description='An Adaptive Second Order Optimizer', |
|
has_betas=True, |
|
second_order=True, |
|
), |
|
OptimInfo( |
|
name='laprop', |
|
opt_class=LaProp, |
|
description='Separating Momentum and Adaptivity in Adam', |
|
has_betas=True, |
|
), |
|
OptimInfo( |
|
name='lion', |
|
opt_class=Lion, |
|
description='Evolved Sign Momentum optimizer for improved convergence', |
|
has_eps=False, |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='madgrad', |
|
opt_class=MADGRAD, |
|
description='Momentum-based Adaptive gradient method', |
|
has_momentum=True |
|
), |
|
OptimInfo( |
|
name='madgradw', |
|
opt_class=MADGRAD, |
|
description='MADGRAD with decoupled weight decay', |
|
has_momentum=True, |
|
defaults={'decoupled_decay': True} |
|
), |
|
OptimInfo( |
|
name='mars', |
|
opt_class=Mars, |
|
description='Unleashing the Power of Variance Reduction for Training Large Models', |
|
has_betas=True, |
|
), |
|
OptimInfo( |
|
name='novograd', |
|
opt_class=NvNovoGrad, |
|
description='Normalized Adam with L2 norm gradient normalization', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='rmsprop', |
|
opt_class=torch.optim.RMSprop, |
|
description='torch.optim.RMSprop, Root Mean Square Propagation', |
|
has_momentum=True, |
|
defaults={'alpha': 0.9} |
|
), |
|
OptimInfo( |
|
name='rmsproptf', |
|
opt_class=RMSpropTF, |
|
description='TensorFlow-style RMSprop implementation, Root Mean Square Propagation', |
|
has_momentum=True, |
|
defaults={'alpha': 0.9} |
|
), |
|
] |
|
for opt in other_optimizers: |
|
registry.register(opt) |
|
registry.register_foreach_default('lion') |
|
|
|
|
|
def _register_apex_optimizers(registry: OptimizerRegistry) -> None: |
|
"""Register APEX optimizers (lazy import)""" |
|
apex_optimizers = [ |
|
OptimInfo( |
|
name='fusedsgd', |
|
opt_class='apex.optimizers.FusedSGD', |
|
description='NVIDIA APEX fused SGD implementation for faster training', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='fusedadam', |
|
opt_class='apex.optimizers.FusedAdam', |
|
description='NVIDIA APEX fused Adam implementation', |
|
has_betas=True, |
|
defaults={'adam_w_mode': False} |
|
), |
|
OptimInfo( |
|
name='fusedadamw', |
|
opt_class='apex.optimizers.FusedAdam', |
|
description='NVIDIA APEX fused AdamW implementation', |
|
has_betas=True, |
|
defaults={'adam_w_mode': True} |
|
), |
|
OptimInfo( |
|
name='fusedlamb', |
|
opt_class='apex.optimizers.FusedLAMB', |
|
description='NVIDIA APEX fused LAMB implementation', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='fusednovograd', |
|
opt_class='apex.optimizers.FusedNovoGrad', |
|
description='NVIDIA APEX fused NovoGrad implementation', |
|
has_betas=True, |
|
defaults={'betas': (0.95, 0.98)} |
|
), |
|
] |
|
for opt in apex_optimizers: |
|
registry.register(opt) |
|
|
|
|
|
def _register_bnb_optimizers(registry: OptimizerRegistry) -> None: |
|
"""Register bitsandbytes optimizers (lazy import)""" |
|
bnb_optimizers = [ |
|
OptimInfo( |
|
name='bnbsgd', |
|
opt_class='bitsandbytes.optim.SGD', |
|
description='bitsandbytes SGD', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='bnbsgd8bit', |
|
opt_class='bitsandbytes.optim.SGD8bit', |
|
description='bitsandbytes 8-bit SGD with dynamic quantization', |
|
has_eps=False, |
|
has_momentum=True, |
|
defaults={'nesterov': True} |
|
), |
|
OptimInfo( |
|
name='bnbadam', |
|
opt_class='bitsandbytes.optim.Adam', |
|
description='bitsandbytes Adam', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='bnbadam8bit', |
|
opt_class='bitsandbytes.optim.Adam', |
|
description='bitsandbytes 8-bit Adam with dynamic quantization', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='bnbadamw', |
|
opt_class='bitsandbytes.optim.AdamW', |
|
description='bitsandbytes AdamW', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
name='bnbadamw8bit', |
|
opt_class='bitsandbytes.optim.AdamW', |
|
description='bitsandbytes 8-bit AdamW with dynamic quantization', |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
'bnblion', |
|
'bitsandbytes.optim.Lion', |
|
description='bitsandbytes Lion', |
|
has_eps=False, |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
'bnblion8bit', |
|
'bitsandbytes.optim.Lion8bit', |
|
description='bitsandbytes 8-bit Lion with dynamic quantization', |
|
has_eps=False, |
|
has_betas=True |
|
), |
|
OptimInfo( |
|
'bnbademamix', |
|
'bitsandbytes.optim.AdEMAMix', |
|
description='bitsandbytes AdEMAMix', |
|
has_betas=True, |
|
num_betas=3, |
|
), |
|
OptimInfo( |
|
'bnbademamix8bit', |
|
'bitsandbytes.optim.AdEMAMix8bit', |
|
description='bitsandbytes 8-bit AdEMAMix with dynamic quantization', |
|
has_betas=True, |
|
num_betas=3, |
|
), |
|
] |
|
for opt in bnb_optimizers: |
|
registry.register(opt) |
|
|
|
|
|
default_registry = OptimizerRegistry() |
|
|
|
def _register_default_optimizers() -> None: |
|
"""Register all default optimizers to the global registry.""" |
|
|
|
_register_sgd_variants(default_registry) |
|
_register_adam_variants(default_registry) |
|
_register_lamb_lars(default_registry) |
|
_register_other_optimizers(default_registry) |
|
_register_apex_optimizers(default_registry) |
|
_register_bnb_optimizers(default_registry) |
|
_register_cautious_optimizers(default_registry) |
|
|
|
|
|
default_registry.register_alias('nesterov', 'sgd') |
|
default_registry.register_alias('nesterovw', 'sgdw') |
|
|
|
|
|
|
|
_register_default_optimizers() |
|
|
|
|
|
|
|
def list_optimizers( |
|
filter: Union[str, List[str]] = '', |
|
exclude_filters: Optional[List[str]] = None, |
|
with_description: bool = False, |
|
) -> List[Union[str, Tuple[str, str]]]: |
|
"""List available optimizer names, optionally filtered. |
|
|
|
List all registered optimizers, with optional filtering using wildcard patterns. |
|
Optimizers can be filtered using include and exclude patterns, and can optionally |
|
return descriptions with each optimizer name. |
|
|
|
Args: |
|
filter: Wildcard style filter string or list of filter strings |
|
(e.g., 'adam*' for all Adam variants, or ['adam*', '*8bit'] for |
|
Adam variants and 8-bit optimizers). Empty string means no filtering. |
|
exclude_filters: Optional list of wildcard patterns to exclude. For example, |
|
['*8bit', 'fused*'] would exclude 8-bit and fused implementations. |
|
with_description: If True, returns tuples of (name, description) instead of |
|
just names. Descriptions provide brief explanations of optimizer characteristics. |
|
|
|
Returns: |
|
If with_description is False: |
|
List of optimizer names as strings (e.g., ['adam', 'adamw', ...]) |
|
If with_description is True: |
|
List of tuples of (name, description) (e.g., [('adam', 'Adaptive Moment...'), ...]) |
|
|
|
Examples: |
|
>>> list_optimizers() |
|
['adam', 'adamw', 'sgd', ...] |
|
|
|
>>> list_optimizers(['la*', 'nla*']) # List lamb & lars |
|
['lamb', 'lambc', 'larc', 'lars', 'nlarc', 'nlars'] |
|
|
|
>>> list_optimizers('*adam*', exclude_filters=['bnb*', 'fused*']) # Exclude bnb & apex adam optimizers |
|
['adam', 'adamax', 'adamp', 'adamw', 'nadam', 'nadamw', 'radam'] |
|
|
|
>>> list_optimizers(with_description=True) # Get descriptions |
|
[('adabelief', 'Adapts learning rate based on gradient prediction error'), |
|
('adadelta', 'torch.optim Adadelta, Adapts learning rates based on running windows of gradients'), |
|
('adafactor', 'Memory-efficient implementation of Adam with factored gradients'), |
|
...] |
|
""" |
|
return default_registry.list_optimizers(filter, exclude_filters, with_description) |
|
|
|
|
|
def get_optimizer_info(name: str) -> OptimInfo: |
|
"""Get the OptimInfo for an optimizer. |
|
|
|
Args: |
|
name: Name of the optimizer |
|
|
|
Returns: |
|
OptimInfo configuration |
|
|
|
Raises: |
|
ValueError: If optimizer is not found |
|
""" |
|
return default_registry.get_optimizer_info(name) |
|
|
|
|
|
def get_optimizer_class( |
|
name: str, |
|
bind_defaults: bool = True, |
|
) -> Union[OptimType, OptimizerCallable]: |
|
"""Get optimizer class by name with option to bind default arguments. |
|
|
|
Retrieves the optimizer class or a partial function with default arguments bound. |
|
This allows direct instantiation of optimizers with their default configurations |
|
without going through the full factory. |
|
|
|
Args: |
|
name: Name of the optimizer to retrieve (e.g., 'adam', 'sgd') |
|
bind_defaults: If True, returns a partial function with default arguments from OptimInfo bound. |
|
If False, returns the raw optimizer class. |
|
|
|
Returns: |
|
If bind_defaults is False: |
|
The optimizer class (e.g., torch.optim.Adam) |
|
If bind_defaults is True: |
|
A partial function with default arguments bound |
|
|
|
Raises: |
|
ValueError: If optimizer name is not found in registry |
|
|
|
Examples: |
|
>>> # Get SGD with nesterov momentum default |
|
>>> SGD = get_optimizer_class('sgd') # nesterov=True bound |
|
>>> opt = SGD(model.parameters(), lr=0.1, momentum=0.9) |
|
|
|
>>> # Get raw optimizer class |
|
>>> SGD = get_optimizer_class('sgd') |
|
>>> opt = SGD(model.parameters(), lr=1e-3, momentum=0.9) |
|
|
|
""" |
|
return default_registry.get_optimizer_class(name, bind_defaults=bind_defaults) |
|
|
|
|
|
def create_optimizer_v2( |
|
model_or_params: Union[nn.Module, ParamsT], |
|
opt: str = 'sgd', |
|
lr: Optional[float] = None, |
|
weight_decay: float = 0., |
|
momentum: float = 0.9, |
|
foreach: Optional[bool] = None, |
|
filter_bias_and_bn: bool = True, |
|
layer_decay: Optional[float] = None, |
|
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None, |
|
**kwargs: Any, |
|
) -> torch.optim.Optimizer: |
|
"""Create an optimizer instance via timm registry. |
|
|
|
Creates and configures an optimizer with appropriate parameter groups and settings. |
|
Supports automatic parameter group creation for weight decay and layer-wise learning |
|
rates, as well as custom parameter grouping. |
|
|
|
Args: |
|
model_or_params: A PyTorch model or an iterable of parameters/parameter groups. |
|
If a model is provided, parameters will be automatically extracted and grouped |
|
based on the other arguments. |
|
opt: Name of the optimizer to create (e.g., 'adam', 'adamw', 'sgd'). |
|
Use list_optimizers() to see available options. |
|
lr: Learning rate. If None, will use the optimizer's default. |
|
weight_decay: Weight decay factor. Will be used to create param groups if model_or_params is a model. |
|
momentum: Momentum factor for optimizers that support it. Only used if the |
|
chosen optimizer accepts a momentum parameter. |
|
foreach: Enable/disable foreach (multi-tensor) implementation if available. |
|
If None, will use optimizer-specific defaults. |
|
filter_bias_and_bn: If True, bias, norm layer parameters (all 1d params) will not have |
|
weight decay applied. Only used when model_or_params is a model and |
|
weight_decay > 0. |
|
layer_decay: Optional layer-wise learning rate decay factor. If provided, |
|
learning rates will be scaled by layer_decay^(max_depth - layer_depth). |
|
Only used when model_or_params is a model. |
|
param_group_fn: Optional function to create custom parameter groups. |
|
If provided, other parameter grouping options will be ignored. |
|
**kwargs: Additional optimizer-specific arguments (e.g., betas for Adam). |
|
|
|
Returns: |
|
Configured optimizer instance. |
|
|
|
Examples: |
|
>>> # Basic usage with a model |
|
>>> optimizer = create_optimizer_v2(model, 'adamw', lr=1e-3) |
|
|
|
>>> # SGD with momentum and weight decay |
|
>>> optimizer = create_optimizer_v2( |
|
... model, 'sgd', lr=0.1, momentum=0.9, weight_decay=1e-4 |
|
... ) |
|
|
|
>>> # Adam with layer-wise learning rate decay |
|
>>> optimizer = create_optimizer_v2( |
|
... model, 'adam', lr=1e-3, layer_decay=0.7 |
|
... ) |
|
|
|
>>> # Custom parameter groups |
|
>>> def group_fn(model): |
|
... return [ |
|
... {'params': model.backbone.parameters(), 'lr': 1e-4}, |
|
... {'params': model.head.parameters(), 'lr': 1e-3} |
|
... ] |
|
>>> optimizer = create_optimizer_v2( |
|
... model, 'sgd', param_group_fn=group_fn |
|
... ) |
|
|
|
Note: |
|
Parameter group handling precedence: |
|
1. If param_group_fn is provided, it will be used exclusively |
|
2. If layer_decay is provided, layer-wise groups will be created |
|
3. If weight_decay > 0 and filter_bias_and_bn is True, weight decay groups will be created |
|
4. Otherwise, all parameters will be in a single group |
|
""" |
|
|
|
return default_registry.create_optimizer( |
|
model_or_params, |
|
opt=opt, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
foreach=foreach, |
|
weight_decay_exclude_1d=filter_bias_and_bn, |
|
layer_decay=layer_decay, |
|
param_group_fn=param_group_fn, |
|
**kwargs |
|
) |
|
|
|
|
|
def optimizer_kwargs(cfg): |
|
""" cfg/argparse to kwargs helper |
|
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn. |
|
""" |
|
kwargs = dict( |
|
opt=cfg.opt, |
|
lr=cfg.lr, |
|
weight_decay=cfg.weight_decay, |
|
momentum=cfg.momentum, |
|
) |
|
if getattr(cfg, 'opt_eps', None) is not None: |
|
kwargs['eps'] = cfg.opt_eps |
|
if getattr(cfg, 'opt_betas', None) is not None: |
|
kwargs['betas'] = cfg.opt_betas |
|
if getattr(cfg, 'layer_decay', None) is not None: |
|
kwargs['layer_decay'] = cfg.layer_decay |
|
if getattr(cfg, 'opt_args', None) is not None: |
|
kwargs.update(cfg.opt_args) |
|
if getattr(cfg, 'opt_foreach', None) is not None: |
|
kwargs['foreach'] = cfg.opt_foreach |
|
return kwargs |
|
|
|
|
|
def create_optimizer( |
|
args, |
|
model: Union[nn.Module, ParamsT], |
|
filter_bias_and_bn: bool = True, |
|
) -> torch.optim.Optimizer: |
|
""" Legacy optimizer factory for backwards compatibility. |
|
NOTE: Use create_optimizer_v2 for new code. |
|
""" |
|
return create_optimizer_v2( |
|
model, |
|
**optimizer_kwargs(cfg=args), |
|
filter_bias_and_bn=filter_bias_and_bn, |
|
) |
|
|
|
|