|
import logging |
|
from itertools import islice |
|
from typing import Collection, Optional |
|
|
|
from torch import nn as nn |
|
|
|
from timm.models import group_parameters |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def param_groups_weight_decay( |
|
model: nn.Module, |
|
weight_decay: float = 1e-5, |
|
no_weight_decay_list: Collection[str] = (), |
|
): |
|
no_weight_decay_list = set(no_weight_decay_list) |
|
decay = [] |
|
no_decay = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: |
|
no_decay.append(param) |
|
else: |
|
decay.append(param) |
|
|
|
return [ |
|
{'params': no_decay, 'weight_decay': 0.}, |
|
{'params': decay, 'weight_decay': weight_decay}] |
|
|
|
|
|
def _group(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def auto_group_layers(model, layers_per_group=12, num_groups=None): |
|
def _in_head(n, hp): |
|
if not hp: |
|
return True |
|
elif isinstance(hp, (tuple, list)): |
|
return any([n.startswith(hpi) for hpi in hp]) |
|
else: |
|
return n.startswith(hp) |
|
|
|
head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) |
|
names_trunk = [] |
|
names_head = [] |
|
for n, _ in model.named_parameters(): |
|
names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) |
|
|
|
|
|
num_trunk_layers = len(names_trunk) |
|
if num_groups is not None: |
|
layers_per_group = -(num_trunk_layers // -num_groups) |
|
names_trunk = list(_group(names_trunk, layers_per_group)) |
|
|
|
num_trunk_groups = len(names_trunk) |
|
layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} |
|
layer_map.update({n: num_trunk_groups for n in names_head}) |
|
return layer_map |
|
|
|
_layer_map = auto_group_layers |
|
|
|
|
|
def param_groups_layer_decay( |
|
model: nn.Module, |
|
weight_decay: float = 0.05, |
|
no_weight_decay_list: Collection[str] = (), |
|
weight_decay_exclude_1d: bool = True, |
|
layer_decay: float = .75, |
|
end_layer_decay: Optional[float] = None, |
|
verbose: bool = False, |
|
): |
|
""" |
|
Parameter groups for layer-wise lr decay & weight decay |
|
Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 |
|
""" |
|
no_weight_decay_list = set(no_weight_decay_list) |
|
param_group_names = {} |
|
param_groups = {} |
|
|
|
if hasattr(model, 'group_matcher'): |
|
|
|
layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) |
|
else: |
|
|
|
layer_map = auto_group_layers(model) |
|
num_layers = max(layer_map.values()) + 1 |
|
layer_max = num_layers - 1 |
|
layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) |
|
|
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
|
|
if (weight_decay_exclude_1d and param.ndim <= 1) or name in no_weight_decay_list: |
|
g_decay = "no_decay" |
|
this_decay = 0. |
|
else: |
|
g_decay = "decay" |
|
this_decay = weight_decay |
|
|
|
layer_id = layer_map.get(name, layer_max) |
|
group_name = "layer_%d_%s" % (layer_id, g_decay) |
|
|
|
if group_name not in param_groups: |
|
this_scale = layer_scales[layer_id] |
|
param_group_names[group_name] = { |
|
"lr_scale": this_scale, |
|
"weight_decay": this_decay, |
|
"param_names": [], |
|
} |
|
param_groups[group_name] = { |
|
"lr_scale": this_scale, |
|
"weight_decay": this_decay, |
|
"params": [], |
|
} |
|
|
|
param_group_names[group_name]["param_names"].append(name) |
|
param_groups[group_name]["params"].append(param) |
|
|
|
if verbose: |
|
import json |
|
_logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) |
|
|
|
return list(param_groups.values()) |
|
|