|
""" |
|
Convert weights from https://github.com/google-research/nested-transformer |
|
NOTE: You'll need https://github.com/google/CommonLoopUtils, not included in requirements.txt |
|
""" |
|
|
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from clu import checkpoint |
|
|
|
|
|
arch_depths = { |
|
'nest_base': [2, 2, 20], |
|
'nest_small': [2, 2, 20], |
|
'nest_tiny': [2, 2, 8], |
|
} |
|
|
|
|
|
def convert_nest(checkpoint_path, arch): |
|
""" |
|
Expects path to checkpoint which is a dir containing 4 files like in each of these folders |
|
- https://console.cloud.google.com/storage/browser/gresearch/nest-checkpoints |
|
`arch` is needed to |
|
Returns a state dict that can be used with `torch.nn.Module.load_state_dict` |
|
Hint: Follow timm.models.nest.Nest.__init__ and |
|
https://github.com/google-research/nested-transformer/blob/main/models/nest_net.py |
|
""" |
|
assert arch in ['nest_base', 'nest_small', 'nest_tiny'], "Your `arch` is not supported" |
|
|
|
flax_dict = checkpoint.load_state_dict(checkpoint_path)['optimizer']['target'] |
|
state_dict = {} |
|
|
|
|
|
state_dict['patch_embed.proj.weight'] = torch.tensor( |
|
flax_dict['PatchEmbedding_0']['Conv_0']['kernel']).permute(3, 2, 0, 1) |
|
state_dict['patch_embed.proj.bias'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['bias']) |
|
|
|
|
|
posemb_keys = [k for k in flax_dict.keys() if k.startswith('PositionEmbedding')] |
|
for i, k in enumerate(posemb_keys): |
|
state_dict[f'levels.{i}.pos_embed'] = torch.tensor(flax_dict[k]['pos_embedding']) |
|
|
|
|
|
depths = arch_depths[arch] |
|
for level in range(len(depths)): |
|
for layer in range(depths[level]): |
|
global_layer_ix = sum(depths[:level]) + layer |
|
|
|
for i in range(2): |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.weight'] = torch.tensor( |
|
flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['scale']) |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.bias'] = torch.tensor( |
|
flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['bias']) |
|
|
|
w_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['kernel'] |
|
w_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['kernel'] |
|
|
|
w_kv = np.concatenate(np.split(w_kv, 2, -1), 1) |
|
w_qkv = np.concatenate([w_q, w_kv], 1) |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.weight'] = torch.tensor(w_qkv).flatten(1).permute(1,0) |
|
b_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['bias'] |
|
b_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['bias'] |
|
|
|
b_kv = np.concatenate(np.split(b_kv, 2, -1), 0) |
|
b_qkv = np.concatenate([b_q, b_kv], 0) |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.bias'] = torch.tensor(b_qkv).reshape(-1) |
|
|
|
w_proj = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['proj_kernel'] |
|
w_proj = torch.tensor(w_proj).permute(2, 1, 0).flatten(1) |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.weight'] = w_proj |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.bias'] = torch.tensor( |
|
flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['bias']) |
|
|
|
for i in range(2): |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.weight'] = torch.tensor( |
|
flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['kernel']).permute(1, 0) |
|
state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.bias'] = torch.tensor( |
|
flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['bias']) |
|
|
|
|
|
for level in range(1, len(depths)): |
|
|
|
state_dict[f'levels.{level}.pool.conv.weight'] = torch.tensor( |
|
flax_dict[f'ConvPool_{level-1}']['Conv_0']['kernel']).permute(3, 2, 0, 1) |
|
state_dict[f'levels.{level}.pool.conv.bias'] = torch.tensor( |
|
flax_dict[f'ConvPool_{level-1}']['Conv_0']['bias']) |
|
|
|
state_dict[f'levels.{level}.pool.norm.weight'] = torch.tensor( |
|
flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['scale']) |
|
state_dict[f'levels.{level}.pool.norm.bias'] = torch.tensor( |
|
flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['bias']) |
|
|
|
|
|
state_dict[f'norm.weight'] = torch.tensor(flax_dict['LayerNorm_0']['scale']) |
|
state_dict[f'norm.bias'] = torch.tensor(flax_dict['LayerNorm_0']['bias']) |
|
|
|
|
|
state_dict['head.weight'] = torch.tensor(flax_dict['Dense_0']['kernel']).permute(1, 0) |
|
state_dict['head.bias'] = torch.tensor(flax_dict['Dense_0']['bias']) |
|
|
|
return state_dict |
|
|
|
|
|
if __name__ == '__main__': |
|
variant = sys.argv[1] |
|
state_dict = convert_nest(f'./nest-{variant[0]}_imagenet', f'nest_{variant}') |
|
torch.save(state_dict, f'./jx_nest_{variant}.pth') |