|
from torch.nn.modules.batchnorm import BatchNorm2d |
|
from torchvision.ops.misc import FrozenBatchNorm2d |
|
|
|
import timm |
|
import pytest |
|
from timm.utils.model import freeze, unfreeze |
|
from timm.utils.model import ActivationStatsHook |
|
from timm.utils.model import extract_spp_stats |
|
|
|
from timm.utils.model import _freeze_unfreeze |
|
from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual |
|
from timm.utils.model import reparameterize_model |
|
from timm.utils.model import get_state_dict |
|
|
|
def test_freeze_unfreeze(): |
|
model = timm.create_model('resnet18') |
|
|
|
|
|
freeze(model) |
|
|
|
assert model.fc.weight.requires_grad == False |
|
|
|
assert model.layer1[0].conv1.weight.requires_grad == False |
|
|
|
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) |
|
|
|
|
|
unfreeze(model) |
|
|
|
assert model.fc.weight.requires_grad == True |
|
|
|
assert model.layer1[0].conv1.weight.requires_grad == True |
|
|
|
assert isinstance(model.layer1[0].bn1, BatchNorm2d) |
|
|
|
|
|
freeze(model, ['layer1', 'layer2.0']) |
|
|
|
assert model.layer1[0].conv1.weight.requires_grad == False |
|
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) |
|
assert model.layer2[0].conv1.weight.requires_grad == False |
|
|
|
assert model.layer3[0].conv1.weight.requires_grad == True |
|
assert isinstance(model.layer3[0].bn1, BatchNorm2d) |
|
assert model.layer2[1].conv1.weight.requires_grad == True |
|
|
|
|
|
unfreeze(model, ['layer1', 'layer2.0']) |
|
|
|
assert model.layer1[0].conv1.weight.requires_grad == True |
|
assert isinstance(model.layer1[0].bn1, BatchNorm2d) |
|
assert model.layer2[0].conv1.weight.requires_grad == True |
|
|
|
|
|
|
|
freeze(model, ['layer1.0.bn1']) |
|
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) |
|
unfreeze(model, ['layer1.0.bn1']) |
|
assert isinstance(model.layer1[0].bn1, BatchNorm2d) |
|
|
|
freeze(model.layer1[0], ['bn1']) |
|
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) |
|
unfreeze(model.layer1[0], ['bn1']) |
|
assert isinstance(model.layer1[0].bn1, BatchNorm2d) |
|
|
|
def test_activation_stats_hook_validation(): |
|
model = timm.create_model('resnet18') |
|
|
|
def test_hook(model, input, output): |
|
return output.mean().item() |
|
|
|
|
|
with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"): |
|
ActivationStatsHook( |
|
model, |
|
hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'], |
|
hook_fns=[test_hook] |
|
) |
|
|
|
|
|
def test_extract_spp_stats(): |
|
model = timm.create_model('resnet18') |
|
|
|
def test_hook(model, input, output): |
|
return output.mean().item() |
|
|
|
stats = extract_spp_stats( |
|
model, |
|
hook_fn_locs=['layer1.0.conv1'], |
|
hook_fns=[test_hook], |
|
input_shape=[2, 3, 32, 32] |
|
) |
|
|
|
assert isinstance(stats, dict) |
|
assert test_hook.__name__ in stats |
|
assert isinstance(stats[test_hook.__name__], list) |
|
assert len(stats[test_hook.__name__]) > 0 |
|
|
|
def test_freeze_unfreeze_bn_root(): |
|
import torch.nn as nn |
|
from timm.layers import BatchNormAct2d |
|
|
|
|
|
bn = nn.BatchNorm2d(10) |
|
bn_act = BatchNormAct2d(10) |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
_freeze_unfreeze(bn, mode="freeze") |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
_freeze_unfreeze(bn_act, mode="freeze") |
|
|
|
|
|
def test_activation_stats_functions(): |
|
import torch |
|
|
|
|
|
x = torch.randn(2, 3, 4, 4) |
|
|
|
|
|
result1 = avg_sq_ch_mean(None, None, x) |
|
assert isinstance(result1, float) |
|
|
|
|
|
result2 = avg_ch_var(None, None, x) |
|
assert isinstance(result2, float) |
|
|
|
|
|
result3 = avg_ch_var_residual(None, None, x) |
|
assert isinstance(result3, float) |
|
|
|
|
|
def test_reparameterize_model(): |
|
import torch.nn as nn |
|
|
|
class FusableModule(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.conv = nn.Conv2d(3, 3, 1) |
|
|
|
def fuse(self): |
|
return nn.Identity() |
|
|
|
class ModelWithFusable(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.fusable = FusableModule() |
|
self.normal = nn.Linear(10, 10) |
|
|
|
model = ModelWithFusable() |
|
|
|
|
|
new_model = reparameterize_model(model, inplace=False) |
|
assert isinstance(new_model.fusable, nn.Identity) |
|
assert isinstance(model.fusable, FusableModule) |
|
|
|
|
|
reparameterize_model(model, inplace=True) |
|
assert isinstance(model.fusable, nn.Identity) |
|
|
|
|
|
def test_get_state_dict_custom_unwrap(): |
|
import torch.nn as nn |
|
|
|
class CustomModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.linear = nn.Linear(10, 10) |
|
|
|
model = CustomModel() |
|
|
|
def custom_unwrap(m): |
|
return m |
|
|
|
state_dict = get_state_dict(model, unwrap_fn=custom_unwrap) |
|
assert 'linear.weight' in state_dict |
|
assert 'linear.bias' in state_dict |
|
|
|
|
|
def test_freeze_unfreeze_string_input(): |
|
model = timm.create_model('resnet18') |
|
|
|
|
|
_freeze_unfreeze(model, 'layer1', mode='freeze') |
|
assert model.layer1[0].conv1.weight.requires_grad == False |
|
|
|
|
|
_freeze_unfreeze(model, 'layer1', mode='unfreeze') |
|
assert model.layer1[0].conv1.weight.requires_grad == True |
|
|
|
|