meg's picture
meg HF staff
Add files using upload-large-folder tool
abee7a4 verified
raw
history blame
5.94 kB
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
import timm
import pytest
from timm.utils.model import freeze, unfreeze
from timm.utils.model import ActivationStatsHook
from timm.utils.model import extract_spp_stats
from timm.utils.model import _freeze_unfreeze
from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual
from timm.utils.model import reparameterize_model
from timm.utils.model import get_state_dict
def test_freeze_unfreeze():
model = timm.create_model('resnet18')
# Freeze all
freeze(model)
# Check top level module
assert model.fc.weight.requires_grad == False
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == False
# Check BN
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
# Unfreeze all
unfreeze(model)
# Check top level module
assert model.fc.weight.requires_grad == True
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == True
# Check BN
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# Freeze some
freeze(model, ['layer1', 'layer2.0'])
# Check frozen
assert model.layer1[0].conv1.weight.requires_grad == False
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == False
# Check not frozen
assert model.layer3[0].conv1.weight.requires_grad == True
assert isinstance(model.layer3[0].bn1, BatchNorm2d)
assert model.layer2[1].conv1.weight.requires_grad == True
# Unfreeze some
unfreeze(model, ['layer1', 'layer2.0'])
# Check not frozen
assert model.layer1[0].conv1.weight.requires_grad == True
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == True
# Freeze/unfreeze BN
# From root
freeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# From direct parent
freeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
def test_activation_stats_hook_validation():
model = timm.create_model('resnet18')
def test_hook(model, input, output):
return output.mean().item()
# Test error case with mismatched lengths
with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"):
ActivationStatsHook(
model,
hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'],
hook_fns=[test_hook]
)
def test_extract_spp_stats():
model = timm.create_model('resnet18')
def test_hook(model, input, output):
return output.mean().item()
stats = extract_spp_stats(
model,
hook_fn_locs=['layer1.0.conv1'],
hook_fns=[test_hook],
input_shape=[2, 3, 32, 32]
)
assert isinstance(stats, dict)
assert test_hook.__name__ in stats
assert isinstance(stats[test_hook.__name__], list)
assert len(stats[test_hook.__name__]) > 0
def test_freeze_unfreeze_bn_root():
import torch.nn as nn
from timm.layers import BatchNormAct2d
# Create batch norm layers
bn = nn.BatchNorm2d(10)
bn_act = BatchNormAct2d(10)
# Test with BatchNorm2d as root
with pytest.raises(AssertionError):
_freeze_unfreeze(bn, mode="freeze")
# Test with BatchNormAct2d as root
with pytest.raises(AssertionError):
_freeze_unfreeze(bn_act, mode="freeze")
def test_activation_stats_functions():
import torch
# Create sample input tensor [batch, channels, height, width]
x = torch.randn(2, 3, 4, 4)
# Test avg_sq_ch_mean
result1 = avg_sq_ch_mean(None, None, x)
assert isinstance(result1, float)
# Test avg_ch_var
result2 = avg_ch_var(None, None, x)
assert isinstance(result2, float)
# Test avg_ch_var_residual
result3 = avg_ch_var_residual(None, None, x)
assert isinstance(result3, float)
def test_reparameterize_model():
import torch.nn as nn
class FusableModule(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
def fuse(self):
return nn.Identity()
class ModelWithFusable(nn.Module):
def __init__(self):
super().__init__()
self.fusable = FusableModule()
self.normal = nn.Linear(10, 10)
model = ModelWithFusable()
# Test with inplace=False (should create a copy)
new_model = reparameterize_model(model, inplace=False)
assert isinstance(new_model.fusable, nn.Identity)
assert isinstance(model.fusable, FusableModule) # Original unchanged
# Test with inplace=True
reparameterize_model(model, inplace=True)
assert isinstance(model.fusable, nn.Identity)
def test_get_state_dict_custom_unwrap():
import torch.nn as nn
class CustomModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 10)
model = CustomModel()
def custom_unwrap(m):
return m
state_dict = get_state_dict(model, unwrap_fn=custom_unwrap)
assert 'linear.weight' in state_dict
assert 'linear.bias' in state_dict
def test_freeze_unfreeze_string_input():
model = timm.create_model('resnet18')
# Test with string input
_freeze_unfreeze(model, 'layer1', mode='freeze')
assert model.layer1[0].conv1.weight.requires_grad == False
# Test unfreezing with string input
_freeze_unfreeze(model, 'layer1', mode='unfreeze')
assert model.layer1[0].conv1.weight.requires_grad == True