|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
from torch import nn, Tensor |
|
from torch.nn.modules.transformer import _get_activation_fn |
|
|
|
|
|
def add_ml_decoder_head(model): |
|
if hasattr(model, 'global_pool') and hasattr(model, 'fc'): |
|
model.global_pool = nn.Identity() |
|
del model.fc |
|
num_classes = model.num_classes |
|
num_features = model.num_features |
|
model.fc = MLDecoder(num_classes=num_classes, initial_num_features=num_features) |
|
elif hasattr(model, 'global_pool') and hasattr(model, 'classifier'): |
|
model.global_pool = nn.Identity() |
|
del model.classifier |
|
num_classes = model.num_classes |
|
num_features = model.num_features |
|
model.classifier = MLDecoder(num_classes=num_classes, initial_num_features=num_features) |
|
elif 'RegNet' in model._get_name() or 'TResNet' in model._get_name(): |
|
del model.head |
|
num_classes = model.num_classes |
|
num_features = model.num_features |
|
model.head = MLDecoder(num_classes=num_classes, initial_num_features=num_features) |
|
else: |
|
print("Model code-writing is not aligned currently with ml-decoder") |
|
exit(-1) |
|
if hasattr(model, 'drop_rate'): |
|
model.drop_rate = 0 |
|
return model |
|
|
|
|
|
class TransformerDecoderLayerOptimal(nn.Module): |
|
def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1, activation="relu", |
|
layer_norm_eps=1e-5) -> None: |
|
super(TransformerDecoderLayerOptimal, self).__init__() |
|
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.dropout = nn.Dropout(dropout) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
|
|
def __setstate__(self, state): |
|
if 'activation' not in state: |
|
state['activation'] = torch.nn.functional.relu |
|
super(TransformerDecoderLayerOptimal, self).__setstate__(state) |
|
|
|
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None) -> Tensor: |
|
tgt = tgt + self.dropout1(tgt) |
|
tgt = self.norm1(tgt) |
|
tgt2 = self.multihead_attn(tgt, memory, memory)[0] |
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
tgt = self.norm3(tgt) |
|
return tgt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MLDecoder(nn.Module): |
|
def __init__(self, num_classes, num_of_groups=-1, decoder_embedding=768, initial_num_features=2048): |
|
super(MLDecoder, self).__init__() |
|
embed_len_decoder = 100 if num_of_groups < 0 else num_of_groups |
|
if embed_len_decoder > num_classes: |
|
embed_len_decoder = num_classes |
|
self.embed_len_decoder = embed_len_decoder |
|
|
|
|
|
decoder_embedding = 768 if decoder_embedding < 0 else decoder_embedding |
|
self.embed_standart = nn.Linear(initial_num_features, decoder_embedding) |
|
|
|
|
|
decoder_dropout = 0.1 |
|
num_layers_decoder = 1 |
|
dim_feedforward = 2048 |
|
layer_decode = TransformerDecoderLayerOptimal(d_model=decoder_embedding, |
|
dim_feedforward=dim_feedforward, dropout=decoder_dropout) |
|
self.decoder = nn.TransformerDecoder(layer_decode, num_layers=num_layers_decoder) |
|
|
|
|
|
self.query_embed = nn.Embedding(embed_len_decoder, decoder_embedding) |
|
self.query_embed.requires_grad_(False) |
|
|
|
|
|
self.num_classes = num_classes |
|
self.duplicate_factor = int(num_classes / embed_len_decoder + 0.999) |
|
self.duplicate_pooling = torch.nn.Parameter( |
|
torch.Tensor(embed_len_decoder, decoder_embedding, self.duplicate_factor)) |
|
self.duplicate_pooling_bias = torch.nn.Parameter(torch.Tensor(num_classes)) |
|
torch.nn.init.xavier_normal_(self.duplicate_pooling) |
|
torch.nn.init.constant_(self.duplicate_pooling_bias, 0) |
|
|
|
def forward(self, x): |
|
if len(x.shape) == 4: |
|
embedding_spatial = x.flatten(2).transpose(1, 2) |
|
else: |
|
embedding_spatial = x |
|
embedding_spatial_786 = self.embed_standart(embedding_spatial) |
|
embedding_spatial_786 = torch.nn.functional.relu(embedding_spatial_786, inplace=True) |
|
|
|
bs = embedding_spatial_786.shape[0] |
|
query_embed = self.query_embed.weight |
|
|
|
tgt = query_embed.unsqueeze(1).expand(-1, bs, -1) |
|
h = self.decoder(tgt, embedding_spatial_786.transpose(0, 1)) |
|
h = h.transpose(0, 1) |
|
|
|
out_extrap = torch.zeros(h.shape[0], h.shape[1], self.duplicate_factor, device=h.device, dtype=h.dtype) |
|
for i in range(self.embed_len_decoder): |
|
h_i = h[:, i, :] |
|
w_i = self.duplicate_pooling[i, :, :] |
|
out_extrap[:, i, :] = torch.matmul(h_i, w_i) |
|
h_out = out_extrap.flatten(1)[:, :self.num_classes] |
|
h_out += self.duplicate_pooling_bias |
|
logits = h_out |
|
return logits |
|
|