|
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb |
|
|
|
This optimizer code was adapted from the following (starting with latest) |
|
* https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py |
|
* https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py |
|
* https://github.com/cybertronai/pytorch-lamb |
|
|
|
Use FusedLamb if you can (GPU). The reason for including this variant of Lamb is to have a version that is |
|
similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install/use APEX. |
|
|
|
In addition to some cleanup, this Lamb impl has been modified to support PyTorch XLA and has been tested on TPU. |
|
|
|
Original copyrights for above sources are below. |
|
|
|
Modifications Copyright 2021 Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
from ._types import ParamsT |
|
|
|
|
|
class Lamb(Optimizer): |
|
"""Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB |
|
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py |
|
|
|
LAMB was proposed in: |
|
- Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 |
|
- On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ |
|
|
|
Args: |
|
params: Iterable of parameters to optimize or dicts defining parameter groups. |
|
lr: Learning rate |
|
betas: Coefficients used for computing running averages of gradient and its norm. |
|
eps: Term added to the denominator to improve numerical stability. |
|
weight_decay: Weight decay |
|
grad_averaging: Whether apply (1-beta2) to grad when calculating running averages of gradient. |
|
max_grad_norm: Value used to clip global grad norm. |
|
trust_clip: Enable LAMBC trust ratio clipping. |
|
always_adapt: Apply adaptive learning rate to 0.0 weight decay parameter. |
|
caution: Apply caution. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: float = 1e-3, |
|
bias_correction: bool = True, |
|
betas: Tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-6, |
|
weight_decay: float = 0.01, |
|
grad_averaging: bool = True, |
|
max_grad_norm: Optional[float] = 1.0, |
|
trust_clip: bool = False, |
|
always_adapt: bool = False, |
|
caution: bool = False, |
|
decoupled_decay: bool = False, |
|
): |
|
defaults = dict( |
|
lr=lr, |
|
bias_correction=bias_correction, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, |
|
max_grad_norm=max_grad_norm, |
|
trust_clip=trust_clip, |
|
always_adapt=always_adapt, |
|
caution=caution, |
|
decoupled_decay=decoupled_decay, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('caution', False) |
|
group.setdefault('decoupled_decay', False) |
|
|
|
def _get_clip_grad_norm(self): |
|
max_grad_norm = self.defaults['max_grad_norm'] |
|
if max_grad_norm is None: |
|
return None |
|
|
|
norms = [] |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instead.') |
|
norms.append(torch.linalg.vector_norm(grad)) |
|
global_norm = torch.linalg.vector_norm(torch.stack(norms)) |
|
clip_global_norm = (global_norm / max_grad_norm).clamp_(min=1.0) |
|
return clip_global_norm |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
clip_grad_norm = self._get_clip_grad_norm() |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group['bias_correction'] else 0 |
|
beta1, beta2 = group['betas'] |
|
grad_averaging = 1 if group['grad_averaging'] else 0 |
|
beta3 = 1 - beta1 if grad_averaging else 1.0 |
|
|
|
|
|
|
|
if 'step' in group: |
|
group['step'] += 1 |
|
else: |
|
group['step'] = 1 |
|
|
|
if bias_correction: |
|
bias_correction1 = 1 - beta1 ** group['step'] |
|
bias_correction2 = 1 - beta2 ** group['step'] |
|
else: |
|
bias_correction1, bias_correction2 = 1.0, 1.0 |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
|
|
if clip_grad_norm is not None: |
|
grad.div_(clip_grad_norm) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=beta3) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
update = (exp_avg / bias_correction1).div_(denom) |
|
|
|
if group['caution']: |
|
|
|
mask = (update * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
update.mul_(mask) |
|
|
|
weight_decay = group['weight_decay'] |
|
if weight_decay != 0: |
|
if group.get('decoupled_decay', False): |
|
p.add_(p, alpha=-group['lr'] * weight_decay) |
|
else: |
|
update.add_(p, alpha=weight_decay) |
|
|
|
if weight_decay != 0 or group['always_adapt']: |
|
|
|
|
|
w_norm = p.norm(2.0) |
|
g_norm = update.norm(2.0) |
|
trust_ratio = w_norm / g_norm |
|
|
|
|
|
trust_ratio = torch.where( |
|
w_norm > 0, |
|
torch.where(g_norm > 0, trust_ratio, 1.0), |
|
1.0, |
|
) |
|
if group['trust_clip']: |
|
|
|
trust_ratio = torch.clamp(trust_ratio, max=1.0) |
|
update.mul_(trust_ratio) |
|
|
|
p.add_(update, alpha=-group['lr']) |
|
|
|
return loss |
|
|