|
""" PyTorch MARS Optimizer |
|
|
|
Code simplified from https://github.com/AGI-Arena/MARS |
|
|
|
Paper: MARS: Unleashing the Power of Variance Reduction for Training Large Models - https://arxiv.org/abs/2411.10438 |
|
|
|
@article{yuan2024mars, |
|
title={MARS: Unleashing the Power of Variance Reduction for Training Large Models}, |
|
author={Yuan, Huizhuo and Liu, Yifeng and Wu, Shuang and Zhou, Xun and Gu, Quanquan}, |
|
journal={arXiv preprint arXiv:2411.10438}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
|
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
from ._types import ParamsT |
|
|
|
|
|
def _mars_single_tensor_step( |
|
p: torch.Tensor, |
|
grad: torch.Tensor, |
|
exp_avg: torch.Tensor, |
|
exp_avg_sq: torch.Tensor, |
|
lr: float, |
|
weight_decay: float, |
|
beta1: float, |
|
beta2: float, |
|
last_grad: torch.Tensor, |
|
eps: float, |
|
step: int, |
|
gamma: float, |
|
mars_type: str, |
|
is_grad_2d: bool, |
|
optimize_1d: bool, |
|
lr_1d_factor: bool, |
|
betas_1d: Tuple[float, float], |
|
caution: bool, |
|
): |
|
|
|
if optimize_1d or is_grad_2d: |
|
one_minus_beta1 = 1. - beta1 |
|
if step == 1: |
|
|
|
c_t = grad |
|
else: |
|
c_t = (grad - last_grad).mul_(gamma * (beta1 / one_minus_beta1)).add_(grad) |
|
c_t_norm = torch.norm(c_t) |
|
if c_t_norm > 1.: |
|
c_t = c_t / c_t_norm |
|
exp_avg.mul_(beta1).add_(c_t, alpha=one_minus_beta1) |
|
|
|
if caution: |
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg = exp_avg * mask |
|
|
|
if mars_type == "adamw": |
|
exp_avg_sq.mul_(beta2).addcmul_(c_t, c_t, value=1. - beta2) |
|
bias_correction1 = 1.0 - beta1 ** step |
|
bias_correction2 = 1.0 - beta2 ** step |
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) |
|
update = p * weight_decay + (exp_avg / bias_correction1).div_(denom) |
|
elif mars_type == "lion": |
|
update = p * weight_decay + exp_avg.sign() |
|
else: |
|
assert False |
|
p.add_(update, alpha=-lr) |
|
else: |
|
beta1_1d, beta2_1d = betas_1d |
|
exp_avg.mul_(beta1_1d).add_(grad, alpha=1. - beta1_1d) |
|
exp_avg_sq.mul_(beta2_1d).addcmul_(grad, grad, value=1. - beta2_1d) |
|
bias_correction1 = 1.0 - beta1_1d ** step |
|
bias_correction2 = 1.0 - beta2_1d ** step |
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) |
|
if caution: |
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg = exp_avg * mask |
|
update = p * weight_decay + (exp_avg / bias_correction1).div_(denom) |
|
p.add_(update, alpha=-(lr * lr_1d_factor)) |
|
return exp_avg, exp_avg_sq |
|
|
|
|
|
class Mars(Optimizer): |
|
""" MARS Optimizer |
|
|
|
Paper: MARS: Unleashing the Power of Variance Reduction for Training Large Models |
|
https://arxiv.org/abs/2411.10438 |
|
|
|
""" |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: float = 3e-3, |
|
betas: Tuple[float, float] = (0.9, 0.99), |
|
eps: float = 1e-8, |
|
weight_decay: float = 0., |
|
gamma: float = 0.025, |
|
mars_type: str = "adamw", |
|
optimize_1d: bool = False, |
|
lr_1d_factor: float = 1.0, |
|
betas_1d: Optional[Tuple[float, float]] = None, |
|
caution: bool = False |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
assert mars_type in ["adamw", "lion"], "MARS type not supported" |
|
|
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
mars_type=mars_type, |
|
gamma=gamma, |
|
optimize_1d=optimize_1d, |
|
lr_1d_factor=lr_1d_factor, |
|
betas_1d=betas_1d or betas, |
|
caution=caution, |
|
) |
|
super(Mars, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(Mars, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('caution', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
if len(state) <= 1: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
state['last_grad'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
state['step'] += 1 |
|
step = state['step'] |
|
exp_avg = state['exp_avg'] |
|
exp_avg_sq = state['exp_avg_sq'] |
|
last_grad = state['last_grad'] |
|
lr = group['lr'] |
|
wd = group['weight_decay'] |
|
beta1, beta2 = group['betas'] |
|
is_grad_2d = grad.ndim >= 2 |
|
|
|
|
|
_mars_single_tensor_step( |
|
p, |
|
grad, |
|
exp_avg, |
|
exp_avg_sq, |
|
lr, |
|
wd, |
|
beta1, |
|
beta2, |
|
last_grad, |
|
group['eps'], |
|
step, |
|
group['gamma'], |
|
mars_type=group['mars_type'], |
|
is_grad_2d=is_grad_2d, |
|
optimize_1d=group['optimize_1d'], |
|
lr_1d_factor=group['lr_1d_factor'], |
|
betas_1d=group['betas_1d'], |
|
caution=group['caution'], |
|
) |
|
|
|
state['last_grad'] = grad |
|
|
|
return loss |
|
|