|
"""RAdam Optimizer. |
|
Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam |
|
Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265 |
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.RAdam and remains as a reference |
|
""" |
|
import math |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class RAdamLegacy(Optimizer): |
|
""" PyTorch RAdam optimizer |
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference |
|
""" |
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=0, |
|
): |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
buffer=[[None, None, None] for _ in range(10)] |
|
) |
|
super(RAdamLegacy, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(RAdamLegacy, self).__setstate__(state) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.float() |
|
if grad.is_sparse: |
|
raise RuntimeError('RAdam does not support sparse gradients') |
|
|
|
p_fp32 = p.float() |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p_fp32) |
|
state['exp_avg_sq'] = torch.zeros_like(p_fp32) |
|
else: |
|
state['exp_avg'] = state['exp_avg'].type_as(p_fp32) |
|
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_fp32) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
|
|
state['step'] += 1 |
|
buffered = group['buffer'][int(state['step'] % 10)] |
|
if state['step'] == buffered[0]: |
|
num_sma, step_size = buffered[1], buffered[2] |
|
else: |
|
buffered[0] = state['step'] |
|
beta2_t = beta2 ** state['step'] |
|
num_sma_max = 2 / (1 - beta2) - 1 |
|
num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) |
|
buffered[1] = num_sma |
|
|
|
|
|
if num_sma >= 5: |
|
step_size = group['lr'] * math.sqrt( |
|
(1 - beta2_t) * |
|
(num_sma - 4) / (num_sma_max - 4) * |
|
(num_sma - 2) / num_sma * |
|
num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) |
|
else: |
|
step_size = group['lr'] / (1 - beta1 ** state['step']) |
|
buffered[2] = step_size |
|
|
|
if group['weight_decay'] != 0: |
|
p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * group['lr']) |
|
|
|
|
|
if num_sma >= 5: |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
p_fp32.addcdiv_(exp_avg, denom, value=-step_size) |
|
else: |
|
p_fp32.add_(exp_avg, alpha=-step_size) |
|
|
|
p.copy_(p_fp32) |
|
|
|
return loss |
|
|