""" CoaT architecture. Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399 Official CoaT code at: https://github.com/mlpc-ucsd/CoaT Modified from timm/models/vision_transformer.py """ from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs __all__ = ['CoaT'] class ConvRelPosEnc(nn.Module): """ Convolutional relative position encoding. """ def __init__(self, head_chs, num_heads, window): """ Initialization. Ch: Channels per head. h: Number of heads. window: Window size(s) in convolutional relative positional encoding. It can have two forms: 1. An integer of window size, which assigns all attention heads with the same window s size in ConvRelPosEnc. 2. A dict mapping window size to #attention head splits ( e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) It will apply different window size to the attention head splits. """ super().__init__() if isinstance(window, int): # Set the same window size for all attention heads. window = {window: num_heads} self.window = window elif isinstance(window, dict): self.window = window else: raise ValueError() self.conv_list = nn.ModuleList() self.head_splits = [] for cur_window, cur_head_split in window.items(): dilation = 1 # Determine padding size. # Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338 padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 cur_conv = nn.Conv2d( cur_head_split * head_chs, cur_head_split * head_chs, kernel_size=(cur_window, cur_window), padding=(padding_size, padding_size), dilation=(dilation, dilation), groups=cur_head_split * head_chs, ) self.conv_list.append(cur_conv) self.head_splits.append(cur_head_split) self.channel_splits = [x * head_chs for x in self.head_splits] def forward(self, q, v, size: Tuple[int, int]): B, num_heads, N, C = q.shape H, W = size _assert(N == 1 + H * W, '') # Convolutional relative position encoding. q_img = q[:, :, 1:, :] # [B, h, H*W, Ch] v_img = v[:, :, 1:, :] # [B, h, H*W, Ch] v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W) v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels conv_v_img_list = [] for i, conv in enumerate(self.conv_list): conv_v_img_list.append(conv(v_img_list[i])) conv_v_img = torch.cat(conv_v_img_list, dim=1) conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2) EV_hat = q_img * conv_v_img EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch]. return EV_hat class FactorAttnConvRelPosEnc(nn.Module): """ Factorized attention with convolutional relative position encoding class. """ def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., shared_crpe=None, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used. self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # Shared convolutional relative position encoding. self.crpe = shared_crpe def forward(self, x, size: Tuple[int, int]): B, N, C = x.shape # Generate Q, K, V. qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # [B, h, N, Ch] # Factorized attention. k_softmax = k.softmax(dim=2) factor_att = k_softmax.transpose(-1, -2) @ v factor_att = q @ factor_att # Convolutional relative position encoding. crpe = self.crpe(q, v, size=size) # [B, h, N, Ch] # Merge and reshape. x = self.scale * factor_att + crpe x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C] # Output projection. x = self.proj(x) x = self.proj_drop(x) return x class ConvPosEnc(nn.Module): """ Convolutional Position Encoding. Note: This module is similar to the conditional position encoding in CPVT. """ def __init__(self, dim, k=3): super(ConvPosEnc, self).__init__() self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) def forward(self, x, size: Tuple[int, int]): B, N, C = x.shape H, W = size _assert(N == 1 + H * W, '') # Extract CLS token and image tokens. cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C] # Depthwise convolution. feat = img_tokens.transpose(1, 2).view(B, C, H, W) x = self.proj(feat) + feat x = x.flatten(2).transpose(1, 2) # Combine with CLS token. x = torch.cat((cls_token, x), dim=1) return x class SerialBlock(nn.Module): """ Serial block class. Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None, ): super().__init__() # Conv-Attention. self.cpe = shared_cpe self.norm1 = norm_layer(dim) self.factoratt_crpe = FactorAttnConvRelPosEnc( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpe, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # MLP. self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop, ) def forward(self, x, size: Tuple[int, int]): # Conv-Attention. x = self.cpe(x, size) cur = self.norm1(x) cur = self.factoratt_crpe(cur, size) x = x + self.drop_path(cur) # MLP. cur = self.norm2(x) cur = self.mlp(cur) x = x + self.drop_path(cur) return x class ParallelBlock(nn.Module): """ Parallel block class. """ def __init__( self, dims, num_heads, mlp_ratios=[], qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_crpes=None, ): super().__init__() # Conv-Attention. self.norm12 = norm_layer(dims[1]) self.norm13 = norm_layer(dims[2]) self.norm14 = norm_layer(dims[3]) self.factoratt_crpe2 = FactorAttnConvRelPosEnc( dims[1], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[1], ) self.factoratt_crpe3 = FactorAttnConvRelPosEnc( dims[2], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[2], ) self.factoratt_crpe4 = FactorAttnConvRelPosEnc( dims[3], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, shared_crpe=shared_crpes[3], ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # MLP. self.norm22 = norm_layer(dims[1]) self.norm23 = norm_layer(dims[2]) self.norm24 = norm_layer(dims[3]) # In parallel block, we assume dimensions are the same and share the linear transformation. assert dims[1] == dims[2] == dims[3] assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) self.mlp2 = self.mlp3 = self.mlp4 = Mlp( in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=proj_drop, ) def upsample(self, x, factor: float, size: Tuple[int, int]): """ Feature map up-sampling. """ return self.interpolate(x, scale_factor=factor, size=size) def downsample(self, x, factor: float, size: Tuple[int, int]): """ Feature map down-sampling. """ return self.interpolate(x, scale_factor=1.0/factor, size=size) def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): """ Feature map interpolation. """ B, N, C = x.shape H, W = size _assert(N == 1 + H * W, '') cls_token = x[:, :1, :] img_tokens = x[:, 1:, :] img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) img_tokens = F.interpolate( img_tokens, scale_factor=scale_factor, recompute_scale_factor=False, mode='bilinear', align_corners=False, ) img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) out = torch.cat((cls_token, img_tokens), dim=1) return out def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): _, S2, S3, S4 = sizes cur2 = self.norm12(x2) cur3 = self.norm13(x3) cur4 = self.norm14(x4) cur2 = self.factoratt_crpe2(cur2, size=S2) cur3 = self.factoratt_crpe3(cur3, size=S3) cur4 = self.factoratt_crpe4(cur4, size=S4) upsample3_2 = self.upsample(cur3, factor=2., size=S3) upsample4_3 = self.upsample(cur4, factor=2., size=S4) upsample4_2 = self.upsample(cur4, factor=4., size=S4) downsample2_3 = self.downsample(cur2, factor=2., size=S2) downsample3_4 = self.downsample(cur3, factor=2., size=S3) downsample2_4 = self.downsample(cur2, factor=4., size=S2) cur2 = cur2 + upsample3_2 + upsample4_2 cur3 = cur3 + upsample4_3 + downsample2_3 cur4 = cur4 + downsample3_4 + downsample2_4 x2 = x2 + self.drop_path(cur2) x3 = x3 + self.drop_path(cur3) x4 = x4 + self.drop_path(cur4) # MLP. cur2 = self.norm22(x2) cur3 = self.norm23(x3) cur4 = self.norm24(x4) cur2 = self.mlp2(cur2) cur3 = self.mlp3(cur3) cur4 = self.mlp4(cur4) x2 = x2 + self.drop_path(cur2) x3 = x3 + self.drop_path(cur3) x4 = x4 + self.drop_path(cur4) return x1, x2, x3, x4 class CoaT(nn.Module): """ CoaT class. """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=(64, 128, 320, 512), serial_depths=(3, 4, 6, 3), parallel_depth=0, num_heads=8, mlp_ratios=(4, 4, 4, 4), qkv_bias=True, drop_rate=0., proj_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNorm, return_interm_layers=False, out_features=None, crpe_window=None, global_pool='token', ): super().__init__() assert global_pool in ('token', 'avg') crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} self.return_interm_layers = return_interm_layers self.out_features = out_features self.embed_dims = embed_dims self.num_features = self.head_hidden_size = embed_dims[-1] self.num_classes = num_classes self.global_pool = global_pool # Patch embeddings. img_size = to_2tuple(img_size) self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) self.patch_embed2 = PatchEmbed( img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) self.patch_embed3 = PatchEmbed( img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) self.patch_embed4 = PatchEmbed( img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) # Class tokens. self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) # Convolutional position encodings. self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) # Convolutional relative position encodings. self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window) self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window) self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window) self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window) # Disable stochastic depth. dpr = drop_path_rate assert dpr == 0.0 skwargs = dict( num_heads=num_heads, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, ) # Serial blocks 1. self.serial_blocks1 = nn.ModuleList([ SerialBlock( dim=embed_dims[0], mlp_ratio=mlp_ratios[0], shared_cpe=self.cpe1, shared_crpe=self.crpe1, **skwargs, ) for _ in range(serial_depths[0])] ) # Serial blocks 2. self.serial_blocks2 = nn.ModuleList([ SerialBlock( dim=embed_dims[1], mlp_ratio=mlp_ratios[1], shared_cpe=self.cpe2, shared_crpe=self.crpe2, **skwargs, ) for _ in range(serial_depths[1])] ) # Serial blocks 3. self.serial_blocks3 = nn.ModuleList([ SerialBlock( dim=embed_dims[2], mlp_ratio=mlp_ratios[2], shared_cpe=self.cpe3, shared_crpe=self.crpe3, **skwargs, ) for _ in range(serial_depths[2])] ) # Serial blocks 4. self.serial_blocks4 = nn.ModuleList([ SerialBlock( dim=embed_dims[3], mlp_ratio=mlp_ratios[3], shared_cpe=self.cpe4, shared_crpe=self.crpe4, **skwargs, ) for _ in range(serial_depths[3])] ) # Parallel blocks. self.parallel_depth = parallel_depth if self.parallel_depth > 0: self.parallel_blocks = nn.ModuleList([ ParallelBlock( dims=embed_dims, mlp_ratios=mlp_ratios, shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4), **skwargs, ) for _ in range(parallel_depth)] ) else: self.parallel_blocks = None # Classification head(s). if not self.return_interm_layers: if self.parallel_blocks is not None: self.norm2 = norm_layer(embed_dims[1]) self.norm3 = norm_layer(embed_dims[2]) else: self.norm2 = self.norm3 = None self.norm4 = norm_layer(embed_dims[3]) if self.parallel_depth > 0: # CoaT series: Aggregate features of last three scales for classification. assert embed_dims[1] == embed_dims[2] == embed_dims[3] self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() else: # CoaT-Lite series: Use feature of last scale for classification. self.aggregate = None self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() # Initialize weights. trunc_normal_(self.cls_token1, std=.02) trunc_normal_(self.cls_token2, std=.02) trunc_normal_(self.cls_token3, std=.02) trunc_normal_(self.cls_token4, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem1=r'^cls_token1|patch_embed1|crpe1|cpe1', serial_blocks1=r'^serial_blocks1\.(\d+)', stem2=r'^cls_token2|patch_embed2|crpe2|cpe2', serial_blocks2=r'^serial_blocks2\.(\d+)', stem3=r'^cls_token3|patch_embed3|crpe3|cpe3', serial_blocks3=r'^serial_blocks3\.(\d+)', stem4=r'^cls_token4|patch_embed4|crpe4|cpe4', serial_blocks4=r'^serial_blocks4\.(\d+)', parallel_blocks=[ # FIXME (partially?) overlap parallel w/ serial blocks?? (r'^parallel_blocks\.(\d+)', None), (r'^norm|aggregate', (99999,)), ] ) return matcher @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('token', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x0): B = x0.shape[0] # Serial blocks 1. x1 = self.patch_embed1(x0) H1, W1 = self.patch_embed1.grid_size x1 = insert_cls(x1, self.cls_token1) for blk in self.serial_blocks1: x1 = blk(x1, size=(H1, W1)) x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 2. x2 = self.patch_embed2(x1_nocls) H2, W2 = self.patch_embed2.grid_size x2 = insert_cls(x2, self.cls_token2) for blk in self.serial_blocks2: x2 = blk(x2, size=(H2, W2)) x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 3. x3 = self.patch_embed3(x2_nocls) H3, W3 = self.patch_embed3.grid_size x3 = insert_cls(x3, self.cls_token3) for blk in self.serial_blocks3: x3 = blk(x3, size=(H3, W3)) x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() # Serial blocks 4. x4 = self.patch_embed4(x3_nocls) H4, W4 = self.patch_embed4.grid_size x4 = insert_cls(x4, self.cls_token4) for blk in self.serial_blocks4: x4 = blk(x4, size=(H4, W4)) x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() # Only serial blocks: Early return. if self.parallel_blocks is None: if not torch.jit.is_scripting() and self.return_interm_layers: # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). feat_out = {} if 'x1_nocls' in self.out_features: feat_out['x1_nocls'] = x1_nocls if 'x2_nocls' in self.out_features: feat_out['x2_nocls'] = x2_nocls if 'x3_nocls' in self.out_features: feat_out['x3_nocls'] = x3_nocls if 'x4_nocls' in self.out_features: feat_out['x4_nocls'] = x4_nocls return feat_out else: # Return features for classification. x4 = self.norm4(x4) return x4 # Parallel blocks. for blk in self.parallel_blocks: x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4)) x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) if not torch.jit.is_scripting() and self.return_interm_layers: # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). feat_out = {} if 'x1_nocls' in self.out_features: x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() feat_out['x1_nocls'] = x1_nocls if 'x2_nocls' in self.out_features: x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() feat_out['x2_nocls'] = x2_nocls if 'x3_nocls' in self.out_features: x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() feat_out['x3_nocls'] = x3_nocls if 'x4_nocls' in self.out_features: x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() feat_out['x4_nocls'] = x4_nocls return feat_out else: x2 = self.norm2(x2) x3 = self.norm3(x3) x4 = self.norm4(x4) return [x2, x3, x4] def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False): if isinstance(x_feat, list): assert self.aggregate is not None if self.global_pool == 'avg': x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) # [B, 3, C] else: x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) # [B, 3, C] x = self.aggregate(x).squeeze(dim=1) # Shape: [B, C] else: x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0] x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x) -> torch.Tensor: if not torch.jit.is_scripting() and self.return_interm_layers: # Return intermediate features (for down-stream tasks). return self.forward_features(x) else: # Return features for classification. x_feat = self.forward_features(x) x = self.forward_head(x_feat) return x def insert_cls(x, cls_token): """ Insert CLS token. """ cls_tokens = cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_tokens, x), dim=1) return x def remove_cls(x): """ Remove CLS token. """ return x[:, 1:, :] def checkpoint_filter_fn(state_dict, model): out_dict = {} state_dict = state_dict.get('model', state_dict) for k, v in state_dict.items(): # original model had unused norm layers, removing them requires filtering pretrained checkpoints if k.startswith('norm1') or \ (k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \ (k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \ (k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \ (k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \ (k.startswith('head') and getattr(model, 'head', None) is None): continue out_dict[k] = v return out_dict def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg( CoaT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs, ) return model def _cfg_coat(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed1.proj', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ 'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'), 'coat_lite_medium_384.in1k': _cfg_coat( hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash', ), }) @register_model def coat_tiny(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6) model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_mini(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6) model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_small(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs) model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_lite_mini(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_lite_small(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4]) model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_lite_medium(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT: model_cfg = dict( img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model