""" PP-HGNet (V1 & V2) Reference: https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md The Paddle Implement of PP-HGNet (https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/docs/en/models/PP-HGNet_en.md) PP-HGNet: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet.py PP-HGNetv2: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py """ from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs from ._manipulate import checkpoint_seq __all__ = ['HighPerfGpuNet'] class LearnableAffineBlock(nn.Module): def __init__( self, scale_value=1.0, bias_value=0.0 ): super().__init__() self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True) self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True) def forward(self, x): return self.scale * x + self.bias class ConvBNAct(nn.Module): def __init__( self, in_chs, out_chs, kernel_size, stride=1, groups=1, padding='', use_act=True, use_lab=False ): super().__init__() self.use_act = use_act self.use_lab = use_lab self.conv = create_conv2d( in_chs, out_chs, kernel_size, stride=stride, padding=padding, groups=groups, ) self.bn = nn.BatchNorm2d(out_chs) if self.use_act: self.act = nn.ReLU() else: self.act = nn.Identity() if self.use_act and self.use_lab: self.lab = LearnableAffineBlock() else: self.lab = nn.Identity() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.lab(x) return x class LightConvBNAct(nn.Module): def __init__( self, in_chs, out_chs, kernel_size, groups=1, use_lab=False ): super().__init__() self.conv1 = ConvBNAct( in_chs, out_chs, kernel_size=1, use_act=False, use_lab=use_lab, ) self.conv2 = ConvBNAct( out_chs, out_chs, kernel_size=kernel_size, groups=out_chs, use_act=True, use_lab=use_lab, ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x class EseModule(nn.Module): def __init__(self, chs): super().__init__() self.conv = nn.Conv2d( chs, chs, kernel_size=1, stride=1, padding=0, ) self.sigmoid = nn.Sigmoid() def forward(self, x): identity = x x = x.mean((2, 3), keepdim=True) x = self.conv(x) x = self.sigmoid(x) return torch.mul(identity, x) class StemV1(nn.Module): # for PP-HGNet def __init__(self, stem_chs): super().__init__() self.stem = nn.Sequential(*[ ConvBNAct( stem_chs[i], stem_chs[i + 1], kernel_size=3, stride=2 if i == 0 else 1) for i in range( len(stem_chs) - 1) ]) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.stem(x) x = self.pool(x) return x class StemV2(nn.Module): # for PP-HGNetv2 def __init__(self, in_chs, mid_chs, out_chs, use_lab=False): super().__init__() self.stem1 = ConvBNAct( in_chs, mid_chs, kernel_size=3, stride=2, use_lab=use_lab, ) self.stem2a = ConvBNAct( mid_chs, mid_chs // 2, kernel_size=2, stride=1, use_lab=use_lab, ) self.stem2b = ConvBNAct( mid_chs // 2, mid_chs, kernel_size=2, stride=1, use_lab=use_lab, ) self.stem3 = ConvBNAct( mid_chs * 2, mid_chs, kernel_size=3, stride=2, use_lab=use_lab, ) self.stem4 = ConvBNAct( mid_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True) def forward(self, x): x = self.stem1(x) x = F.pad(x, (0, 1, 0, 1)) x2 = self.stem2a(x) x2 = F.pad(x2, (0, 1, 0, 1)) x2 = self.stem2b(x2) x1 = self.pool(x) x = torch.cat([x1, x2], dim=1) x = self.stem3(x) x = self.stem4(x) return x class HighPerfGpuBlock(nn.Module): def __init__( self, in_chs, mid_chs, out_chs, layer_num, kernel_size=3, residual=False, light_block=False, use_lab=False, agg='ese', drop_path=0., ): super().__init__() self.residual = residual self.layers = nn.ModuleList() for i in range(layer_num): if light_block: self.layers.append( LightConvBNAct( in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, use_lab=use_lab, ) ) else: self.layers.append( ConvBNAct( in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, stride=1, use_lab=use_lab, ) ) # feature aggregation total_chs = in_chs + layer_num * mid_chs if agg == 'se': aggregation_squeeze_conv = ConvBNAct( total_chs, out_chs // 2, kernel_size=1, stride=1, use_lab=use_lab, ) aggregation_excitation_conv = ConvBNAct( out_chs // 2, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) self.aggregation = nn.Sequential( aggregation_squeeze_conv, aggregation_excitation_conv, ) else: aggregation_conv = ConvBNAct( total_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) att = EseModule(out_chs) self.aggregation = nn.Sequential( aggregation_conv, att, ) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def forward(self, x): identity = x output = [x] for layer in self.layers: x = layer(x) output.append(x) x = torch.cat(output, dim=1) x = self.aggregation(x) if self.residual: x = self.drop_path(x) + identity return x class HighPerfGpuStage(nn.Module): def __init__( self, in_chs, mid_chs, out_chs, block_num, layer_num, downsample=True, stride=2, light_block=False, kernel_size=3, use_lab=False, agg='ese', drop_path=0., ): super().__init__() self.downsample = downsample if downsample: self.downsample = ConvBNAct( in_chs, in_chs, kernel_size=3, stride=stride, groups=in_chs, use_act=False, use_lab=use_lab, ) else: self.downsample = nn.Identity() blocks_list = [] for i in range(block_num): blocks_list.append( HighPerfGpuBlock( in_chs if i == 0 else out_chs, mid_chs, out_chs, layer_num, residual=False if i == 0 else True, kernel_size=kernel_size, light_block=light_block, use_lab=use_lab, agg=agg, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) ) self.blocks = nn.Sequential(*blocks_list) self.grad_checkpointing= False def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=False) else: x = self.blocks(x) return x class ClassifierHead(nn.Module): def __init__( self, in_features: int, num_classes: int, pool_type: str = 'avg', drop_rate: float = 0., hidden_size: Optional[int] = 2048, use_lab: bool = False ): super(ClassifierHead, self).__init__() self.num_features = in_features if pool_type is not None: if not pool_type: assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) if hidden_size is not None: self.num_features = hidden_size last_conv = nn.Conv2d( in_features, hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) act = nn.ReLU() if use_lab: lab = LearnableAffineBlock() self.last_conv = nn.Sequential(last_conv, act, lab) else: self.last_conv = nn.Sequential(last_conv, act) else: self.last_conv = nn.Identity() self.dropout = nn.Dropout(drop_rate) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def reset(self, num_classes: int, pool_type: Optional[str] = None): if pool_type is not None: if not pool_type: assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.last_conv(x) x = self.dropout(x) x = self.flatten(x) if pre_logits: return x x = self.fc(x) return x class HighPerfGpuNet(nn.Module): def __init__( self, cfg: Dict, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', head_hidden_size: Optional[int] = 2048, drop_rate: float = 0., drop_path_rate: float = 0., use_lab: bool = False, **kwargs, ): super(HighPerfGpuNet, self).__init__() stem_type = cfg["stem_type"] stem_chs = cfg["stem_chs"] stages_cfg = [cfg["stage1"], cfg["stage2"], cfg["stage3"], cfg["stage4"]] self.num_classes = num_classes self.drop_rate = drop_rate self.use_lab = use_lab assert stem_type in ['v1', 'v2'] if stem_type == 'v2': self.stem = StemV2( in_chs=in_chans, mid_chs=stem_chs[0], out_chs=stem_chs[1], use_lab=use_lab) else: self.stem = StemV1([in_chans] + stem_chs) current_stride = 4 stages = [] self.feature_info = [] block_depths = [c[3] for c in stages_cfg] dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)] for i, stage_config in enumerate(stages_cfg): in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num = stage_config stages += [HighPerfGpuStage( in_chs=in_chs, mid_chs=mid_chs, out_chs=out_chs, block_num=block_num, layer_num=layer_num, downsample=downsample, light_block=light_block, kernel_size=kernel_size, use_lab=use_lab, agg='ese' if stem_type == 'v1' else 'se', drop_path=dpr[i], )] self.num_features = out_chs if downsample: current_stride *= 2 self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.head = ClassifierHead( self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate, hidden_size=head_hidden_size, use_lab=use_lab ) self.head_hidden_size = self.head.num_features for n, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.zeros_(m.bias) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)', ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) return self.stages(x) def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x model_cfgs = dict( # PP-HGNet hgnet_tiny={ "stem_type": 'v1', "stem_chs": [48, 48, 96], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [96, 96, 224, 1, False, False, 3, 5], "stage2": [224, 128, 448, 1, True, False, 3, 5], "stage3": [448, 160, 512, 2, True, False, 3, 5], "stage4": [512, 192, 768, 1, True, False, 3, 5], }, hgnet_small={ "stem_type": 'v1', "stem_chs": [64, 64, 128], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [128, 128, 256, 1, False, False, 3, 6], "stage2": [256, 160, 512, 1, True, False, 3, 6], "stage3": [512, 192, 768, 2, True, False, 3, 6], "stage4": [768, 224, 1024, 1, True, False, 3, 6], }, hgnet_base={ "stem_type": 'v1', "stem_chs": [96, 96, 160], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [160, 192, 320, 1, False, False, 3, 7], "stage2": [320, 224, 640, 2, True, False, 3, 7], "stage3": [640, 256, 960, 3, True, False, 3, 7], "stage4": [960, 288, 1280, 2, True, False, 3, 7], }, # PP-HGNetv2 hgnetv2_b0={ "stem_type": 'v2', "stem_chs": [16, 16], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [16, 16, 64, 1, False, False, 3, 3], "stage2": [64, 32, 256, 1, True, False, 3, 3], "stage3": [256, 64, 512, 2, True, True, 5, 3], "stage4": [512, 128, 1024, 1, True, True, 5, 3], }, hgnetv2_b1={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 64, 1, False, False, 3, 3], "stage2": [64, 48, 256, 1, True, False, 3, 3], "stage3": [256, 96, 512, 2, True, True, 5, 3], "stage4": [512, 192, 1024, 1, True, True, 5, 3], }, hgnetv2_b2={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 96, 1, False, False, 3, 4], "stage2": [96, 64, 384, 1, True, False, 3, 4], "stage3": [384, 128, 768, 3, True, True, 5, 4], "stage4": [768, 256, 1536, 1, True, True, 5, 4], }, hgnetv2_b3={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 128, 1, False, False, 3, 5], "stage2": [128, 64, 512, 1, True, False, 3, 5], "stage3": [512, 128, 1024, 3, True, True, 5, 5], "stage4": [1024, 256, 2048, 1, True, True, 5, 5], }, hgnetv2_b4={ "stem_type": 'v2', "stem_chs": [32, 48], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [48, 48, 128, 1, False, False, 3, 6], "stage2": [128, 96, 512, 1, True, False, 3, 6], "stage3": [512, 192, 1024, 3, True, True, 5, 6], "stage4": [1024, 384, 2048, 1, True, True, 5, 6], }, hgnetv2_b5={ "stem_type": 'v2', "stem_chs": [32, 64], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [64, 64, 128, 1, False, False, 3, 6], "stage2": [128, 128, 512, 2, True, False, 3, 6], "stage3": [512, 256, 1024, 5, True, True, 5, 6], "stage4": [1024, 512, 2048, 2, True, True, 5, 6], }, hgnetv2_b6={ "stem_type": 'v2', "stem_chs": [48, 96], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [96, 96, 192, 2, False, False, 3, 6], "stage2": [192, 192, 512, 3, True, False, 3, 6], "stage3": [512, 384, 1024, 6, True, True, 5, 6], "stage4": [1024, 768, 2048, 3, True, True, 5, 6], }, ) def _create_hgnet(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) return build_model_with_cfg( HighPerfGpuNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.965, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv', 'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288), **kwargs, } default_cfgs = generate_default_cfgs({ 'hgnet_tiny.paddle_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_tiny.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.paddle_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_base.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), }) @register_model def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs) @register_model def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs) @register_model def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs)