""" EfficientNet, MobileNetV3, etc Blocks Hacked together by / Copyright 2019, Ross Wightman """ from typing import Callable, Dict, Optional, Type import torch import torch.nn as nn from torch.nn import functional as F from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, create_aa, to_2tuple, LayerType,\ ConvNormAct, get_norm_act_layer, MultiQueryAttention2d, Attention2d __all__ = [ 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'UniversalInvertedResidual', 'MobileAttention' ] ModuleType = Type[nn.Module] def num_groups(group_size: Optional[int], channels: int): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size class SqueezeExcite(nn.Module): """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family Args: in_chs (int): input channels to layer rd_ratio (float): ratio of squeeze reduction act_layer (nn.Module): activation layer of containing block gate_layer (Callable): attention gate function force_act_layer (nn.Module): override block's activation fn if this is set/bound rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs """ def __init__( self, in_chs: int, rd_ratio: float = 0.25, rd_channels: Optional[int] = None, act_layer: LayerType = nn.ReLU, gate_layer: LayerType = nn.Sigmoid, force_act_layer: Optional[LayerType] = None, rd_round_fn: Optional[Callable] = None, ): super(SqueezeExcite, self).__init__() if rd_channels is None: rd_round_fn = rd_round_fn or round rd_channels = rd_round_fn(in_chs * rd_ratio) act_layer = force_act_layer or act_layer self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) self.act1 = create_act_layer(act_layer, inplace=True) self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) return x * self.gate(x_se) class ConvBnAct(nn.Module): """ Conv + Norm Layer + Activation w/ optional skip connection """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int, stride: int = 1, dilation: int = 1, group_size: int = 0, pad_type: str = '', skip: bool = False, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, drop_path_rate: float = 0., ): super(ConvBnAct, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) groups = num_groups(group_size, in_chs) self.has_skip = skip and stride == 1 and in_chs == out_chs use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation self.conv = create_conv2d( in_chs, out_chs, kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(out_chs, inplace=True) self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # output of conv after act, same as block coutput return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv.out_channels) def forward(self, x): shortcut = x x = self.conv(x) x = self.bn1(x) x = self.aa(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class DepthwiseSeparableConv(nn.Module): """ Depthwise-separable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, pw_kernel_size: int = 1, pw_act: bool = False, s2d: int = 0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, drop_path_rate: float = 0., ): super(DepthwiseSeparableConv, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Space to depth if s2d == 1: sd_chs = int(in_chs * 4) self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') self.bn_s2d = norm_act_layer(sd_chs, sd_chs) dw_kernel_size = (dw_kernel_size + 1) // 2 dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type in_chs = sd_chs use_aa = False # disable AA else: self.conv_s2d = None self.bn_s2d = None dw_pad_type = pad_type groups = num_groups(group_size, in_chs) self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, padding=dw_pad_type, groups=groups) self.bn1 = norm_act_layer(in_chs, inplace=True) self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pw.out_channels) def forward(self, x): shortcut = x if self.conv_s2d is not None: x = self.conv_s2d(x) x = self.bn_s2d(x) x = self.conv_dw(x) x = self.bn1(x) x = self.aa(x) x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in * MNasNet - https://arxiv.org/abs/1807.11626 * EfficientNet - https://arxiv.org/abs/1905.11946 * MobileNet-V3 - https://arxiv.org/abs/1905.02244 """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, exp_kernel_size: int = 1, pw_kernel_size: int = 1, s2d: int = 0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, conv_kwargs: Optional[Dict] = None, drop_path_rate: float = 0., ): super(InvertedResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) conv_kwargs = conv_kwargs or {} self.has_skip = (in_chs == out_chs and stride == 1) and not noskip use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Space to depth if s2d == 1: sd_chs = int(in_chs * 4) self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') self.bn_s2d = norm_act_layer(sd_chs, sd_chs) dw_kernel_size = (dw_kernel_size + 1) // 2 dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type in_chs = sd_chs use_aa = False # disable AA else: self.conv_s2d = None self.bn_s2d = None dw_pad_type = pad_type mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, mid_chs) # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_act_layer(mid_chs, inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=dw_pad_type, **conv_kwargs) self.bn2 = norm_act_layer(mid_chs, inplace=True) self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x if self.conv_s2d is not None: x = self.conv_s2d(x) x = self.bn_s2d(x) x = self.conv_pw(x) x = self.bn1(x) x = self.conv_dw(x) x = self.bn2(x) x = self.aa(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class LayerScale2d(nn.Module): def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma.view(1, -1, 1, 1) return x.mul_(gamma) if self.inplace else x * gamma class UniversalInvertedResidual(nn.Module): """ Universal Inverted Residual Block (aka Universal Inverted Bottleneck, UIB) For MobileNetV4 - https://arxiv.org/abs/, referenced from https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L778 """ def __init__( self, in_chs: int, out_chs: int, dw_kernel_size_start: int = 0, dw_kernel_size_mid: int = 3, dw_kernel_size_end: int = 0, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, conv_kwargs: Optional[Dict] = None, drop_path_rate: float = 0., layer_scale_init_value: Optional[float] = 1e-5, ): super(UniversalInvertedResidual, self).__init__() conv_kwargs = conv_kwargs or {} self.has_skip = (in_chs == out_chs and stride == 1) and not noskip if stride > 1: assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end # FIXME dilation isn't right w/ extra ks > 1 convs if dw_kernel_size_start: dw_start_stride = stride if not dw_kernel_size_mid else 1 dw_start_groups = num_groups(group_size, in_chs) self.dw_start = ConvNormAct( in_chs, in_chs, dw_kernel_size_start, stride=dw_start_stride, dilation=dilation, # FIXME groups=dw_start_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs, ) else: self.dw_start = nn.Identity() # Point-wise expansion mid_chs = make_divisible(in_chs * exp_ratio) self.pw_exp = ConvNormAct( in_chs, mid_chs, 1, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) # Middle depth-wise convolution if dw_kernel_size_mid: groups = num_groups(group_size, mid_chs) self.dw_mid = ConvNormAct( mid_chs, mid_chs, dw_kernel_size_mid, stride=stride, dilation=dilation, # FIXME groups=groups, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, **conv_kwargs, ) else: # keeping mid as identity so it can be hooked more easily for features self.dw_mid = nn.Identity() # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.pw_proj = ConvNormAct( mid_chs, out_chs, 1, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) if dw_kernel_size_end: dw_end_stride = stride if not dw_kernel_size_start and not dw_kernel_size_mid else 1 dw_end_groups = num_groups(group_size, out_chs) if dw_end_stride > 1: assert not aa_layer self.dw_end = ConvNormAct( out_chs, out_chs, dw_kernel_size_end, stride=dw_end_stride, dilation=dilation, groups=dw_end_groups, padding=pad_type, apply_act=False, act_layer=act_layer, norm_layer=norm_layer, **conv_kwargs, ) else: self.dw_end = nn.Identity() if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) else: self.layer_scale = nn.Identity() self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PWL return dict(module='pw_proj.conv', hook_type='forward_pre', num_chs=self.pw_proj.conv.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.pw_proj.conv.out_channels) def forward(self, x): shortcut = x x = self.dw_start(x) x = self.pw_exp(x) x = self.dw_mid(x) x = self.se(x) x = self.pw_proj(x) x = self.dw_end(x) x = self.layer_scale(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class MobileAttention(nn.Module): """ Mobile Attention Block For MobileNetV4 - https://arxiv.org/abs/, referenced from https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L1504 """ def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dw_kernel_size: int = 3, dilation: int = 1, group_size: int = 1, pad_type: str = '', num_heads: int = 8, key_dim: int = 64, value_dim: int = 64, use_multi_query: bool = False, query_strides: int = (1, 1), kv_stride: int = 1, cpe_dw_kernel_size: int = 3, noskip: bool = False, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, drop_path_rate: float = 0., attn_drop: float = 0.0, proj_drop: float = 0.0, layer_scale_init_value: Optional[float] = 1e-5, use_bias: bool = False, use_cpe: bool = False, ): super(MobileAttention, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip self.query_strides = to_2tuple(query_strides) self.kv_stride = kv_stride self.has_query_stride = any([s > 1 for s in self.query_strides]) # This CPE is different than the one suggested in the original paper. # https://arxiv.org/abs/2102.10882 # 1. Rather than adding one CPE before the attention blocks, we add a CPE # into every attention block. # 2. We replace the expensive Conv2D by a Seperable DW Conv. if use_cpe: self.conv_cpe_dw = create_conv2d( in_chs, in_chs, kernel_size=cpe_dw_kernel_size, dilation=dilation, depthwise=True, bias=True, ) else: self.conv_cpe_dw = None self.norm = norm_act_layer(in_chs, apply_act=False) if num_heads is None: assert in_chs % key_dim == 0 num_heads = in_chs // key_dim if use_multi_query: self.attn = MultiQueryAttention2d( in_chs, dim_out=out_chs, num_heads=num_heads, key_dim=key_dim, value_dim=value_dim, query_strides=query_strides, kv_stride=kv_stride, dilation=dilation, padding=pad_type, dw_kernel_size=dw_kernel_size, attn_drop=attn_drop, proj_drop=proj_drop, #bias=use_bias, # why not here if used w/ mhsa? ) else: self.attn = Attention2d( in_chs, dim_out=out_chs, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop, bias=use_bias, ) if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) else: self.layer_scale = nn.Identity() self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pw.out_channels) def forward(self, x): if self.conv_cpe_dw is not None: x_cpe = self.conv_cpe_dw(x) x = x + x_cpe shortcut = x x = self.norm(x) x = self.attn(x) x = self.layer_scale(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class CondConvResidual(InvertedResidual): """ Inverted residual block w/ CondConv routing""" def __init__( self, in_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 1, pad_type: str = '', noskip: bool = False, exp_ratio: float = 1.0, exp_kernel_size: int = 1, pw_kernel_size: int = 1, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, num_experts: int = 0, drop_path_rate: float = 0., ): self.num_experts = num_experts conv_kwargs = dict(num_experts=self.num_experts) super(CondConvResidual, self).__init__( in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, group_size=group_size, pad_type=pad_type, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, se_layer=se_layer, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate, ) self.routing_fn = nn.Linear(in_chs, self.num_experts) def forward(self, x): shortcut = x pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routing routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) x = self.conv_pw(x, routing_weights) x = self.bn1(x) x = self.conv_dw(x, routing_weights) x = self.bn2(x) x = self.se(x) x = self.conv_pwl(x, routing_weights) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class EdgeResidual(nn.Module): """ Residual block with expansion convolution followed by pointwise-linear w/ stride Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers * MobileDet - https://arxiv.org/abs/2004.14525 * EfficientNet-X - https://arxiv.org/abs/2102.05610 * EfficientNet-V2 - https://arxiv.org/abs/2104.00298 """ def __init__( self, in_chs: int, out_chs: int, exp_kernel_size: int = 3, stride: int = 1, dilation: int = 1, group_size: int = 0, pad_type: str = '', force_in_chs: int = 0, noskip: bool = False, exp_ratio: float = 1.0, pw_kernel_size: int = 1, act_layer: LayerType = nn.ReLU, norm_layer: LayerType = nn.BatchNorm2d, aa_layer: Optional[LayerType] = None, se_layer: Optional[ModuleType] = None, drop_path_rate: float = 0., ): super(EdgeResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) if force_in_chs > 0: mid_chs = make_divisible(force_in_chs * exp_ratio) else: mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, mid_chs) # NOTE: Using out_chs of conv_exp for groups calc self.has_skip = (in_chs == out_chs and stride == 1) and not noskip use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation # Expansion convolution self.conv_exp = create_conv2d( in_chs, mid_chs, exp_kernel_size, stride=1 if use_aa else stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(mid_chs, inplace=True) self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, before PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x x = self.conv_exp(x) x = self.bn1(x) x = self.aa(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x