""" Model creation / weight loading / state_dict helpers Hacked together by / Copyright 2020 Ross Wightman """ import logging import os from typing import Any, Callable, Dict, Optional, Union import torch try: import safetensors.torch _has_safetensors = True except ImportError: _has_safetensors = False _logger = logging.getLogger(__name__) __all__ = ['clean_state_dict', 'load_state_dict', 'load_checkpoint', 'remap_state_dict', 'resume_checkpoint'] def _remove_prefix(text, prefix): # FIXME replace with 3.9 stdlib fn when min at 3.9 if text.startswith(prefix): return text[len(prefix):] return text def clean_state_dict(state_dict: Dict[str, Any]) -> Dict[str, Any]: # 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training cleaned_state_dict = {} to_remove = ( 'module.', # DDP wrapper '_orig_mod.', # torchcompile dynamo wrapper ) for k, v in state_dict.items(): for r in to_remove: k = _remove_prefix(k, r) cleaned_state_dict[k] = v return cleaned_state_dict def load_state_dict( checkpoint_path: str, use_ema: bool = True, device: Union[str, torch.device] = 'cpu', weights_only: bool = False, ) -> Dict[str, Any]: if checkpoint_path and os.path.isfile(checkpoint_path): # Check if safetensors or not and load weights accordingly if str(checkpoint_path).endswith(".safetensors"): assert _has_safetensors, "`pip install safetensors` to use .safetensors" checkpoint = safetensors.torch.load_file(checkpoint_path, device=device) else: try: checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only) except TypeError: checkpoint = torch.load(checkpoint_path, map_location=device) state_dict_key = '' if isinstance(checkpoint, dict): if use_ema and checkpoint.get('state_dict_ema', None) is not None: state_dict_key = 'state_dict_ema' elif use_ema and checkpoint.get('model_ema', None) is not None: state_dict_key = 'model_ema' elif 'state_dict' in checkpoint: state_dict_key = 'state_dict' elif 'model' in checkpoint: state_dict_key = 'model' state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint) _logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) return state_dict else: _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError() def load_checkpoint( model: torch.nn.Module, checkpoint_path: str, use_ema: bool = True, device: Union[str, torch.device] = 'cpu', strict: bool = True, remap: bool = False, filter_fn: Optional[Callable] = None, weights_only: bool = False, ): if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): # numpy checkpoint, try to load via model specific load_pretrained fn if hasattr(model, 'load_pretrained'): model.load_pretrained(checkpoint_path) else: raise NotImplementedError('Model cannot load numpy checkpoint') return state_dict = load_state_dict(checkpoint_path, use_ema, device=device, weights_only=weights_only) if remap: state_dict = remap_state_dict(state_dict, model) elif filter_fn: state_dict = filter_fn(state_dict, model) incompatible_keys = model.load_state_dict(state_dict, strict=strict) return incompatible_keys def remap_state_dict( state_dict: Dict[str, Any], model: torch.nn.Module, allow_reshape: bool = True ): """ remap checkpoint by iterating over state dicts in order (ignoring original keys). This assumes models (and originating state dict) were created with params registered in same order. """ out_dict = {} for (ka, va), (kb, vb) in zip(model.state_dict().items(), state_dict.items()): assert va.numel() == vb.numel(), f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' if va.shape != vb.shape: if allow_reshape: vb = vb.reshape(va.shape) else: assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' out_dict[ka] = vb return out_dict def resume_checkpoint( model: torch.nn.Module, checkpoint_path: str, optimizer: torch.optim.Optimizer = None, loss_scaler: Any = None, log_info: bool = True, ): resume_epoch = None if os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: if log_info: _logger.info('Restoring model state from checkpoint...') state_dict = clean_state_dict(checkpoint['state_dict']) model.load_state_dict(state_dict) if optimizer is not None and 'optimizer' in checkpoint: if log_info: _logger.info('Restoring optimizer state from checkpoint...') optimizer.load_state_dict(checkpoint['optimizer']) if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: if log_info: _logger.info('Restoring AMP loss scaler state from checkpoint...') loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) if 'epoch' in checkpoint: resume_epoch = checkpoint['epoch'] if 'version' in checkpoint and checkpoint['version'] > 1: resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save if log_info: _logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) else: model.load_state_dict(checkpoint) if log_info: _logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) return resume_epoch else: _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError()