"""RAdam Optimizer. Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265 NOTE: This impl has been deprecated in favour of torch.optim.RAdam and remains as a reference """ import math import torch from torch.optim.optimizer import Optimizer class RAdamLegacy(Optimizer): """ PyTorch RAdam optimizer NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)] ) super(RAdamLegacy, self).__init__(params, defaults) def __setstate__(self, state): super(RAdamLegacy, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_fp32 = p.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_fp32) state['exp_avg_sq'] = torch.zeros_like(p_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) state['step'] += 1 buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: num_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] num_sma_max = 2 / (1 - beta2) - 1 num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = num_sma # more conservative since it's an approximated value if num_sma >= 5: step_size = group['lr'] * math.sqrt( (1 - beta2_t) * (num_sma - 4) / (num_sma_max - 4) * (num_sma - 2) / num_sma * num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) else: step_size = group['lr'] / (1 - beta1 ** state['step']) buffered[2] = step_size if group['weight_decay'] != 0: p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * group['lr']) # more conservative since it's an approximated value if num_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) p_fp32.addcdiv_(exp_avg, denom, value=-step_size) else: p_fp32.add_(exp_avg, alpha=-step_size) p.copy_(p_fp32) return loss