""" Attention Pool 2D Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. Based on idea in CLIP by OpenAI, licensed Apache 2.0 https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py Hacked together by / Copyright 2021 Ross Wightman """ from typing import Optional, Union, Tuple import torch import torch.nn as nn from. config import use_fused_attn from .helpers import to_2tuple from .pos_embed import resample_abs_pos_embed from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding from .weight_init import trunc_normal_ class RotAttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ rotary (relative) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW """ fused_attn: torch.jit.Final[bool] def __init__( self, in_features: int, out_features: Optional[int] = None, ref_feat_size: Union[int, Tuple[int, int]] = 7, embed_dim: Optional[int] = None, head_dim: Optional[int] = 64, num_heads: Optional[int] = None, qkv_bias: bool = True, qkv_separate: bool = False, pool_type: str = 'token', class_token: bool = False, drop_rate: float = 0., ): super().__init__() assert pool_type in ('', 'token') self.embed_dim = embed_dim = embed_dim or in_features self.in_features = in_features self.out_features = out_features or in_features ref_feat_size = to_2tuple(ref_feat_size) if num_heads is not None: assert embed_dim % num_heads == 0 head_dim = embed_dim // num_heads else: assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim self.num_heads = num_heads self.head_dim = head_dim self.pool_type = pool_type.lower() self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() if class_token: self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) else: self.cls_token = None if qkv_separate: self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.qkv = None else: self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.drop = nn.Dropout(drop_rate) self.proj = nn.Linear(embed_dim, self.out_features) self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size) def init_weights(self, zero_init_last: bool = False): if self.qkv is None: in_features = self.q.in_features trunc_normal_(self.q.weight, std=in_features ** -0.5) nn.init.zeros_(self.q.bias) trunc_normal_(self.k.weight, std=in_features ** -0.5) nn.init.zeros_(self.k.bias) trunc_normal_(self.v.weight, std=in_features ** -0.5) nn.init.zeros_(self.v.bias) else: in_features = self.qkv.in_features trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): # NOTE: this module is being used as a head, so need compatible reset() if pool_type is not None: assert pool_type in ('', 'token') self.pool_type = pool_type if num_classes is not None: self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() self.out_features = num_classes if num_classes > 0 else self.embed_dim def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: if self.pool_type == 'token': x = x[:, 0] else: # if not pooled, return spatial output without token x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) return x def forward(self, x, pre_logits: bool = False): B, _, H, W = x.shape N = H * W x = x.flatten(2).transpose(1, 2) if self.cls_token is None: x = torch.cat([x.mean(1, keepdim=True), x], dim=1) else: x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) if self.qkv is None: q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) else: x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x.unbind(0) rse, rce = self.pos_embed.get_embed((H, W)) q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v) k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v) if self.fused_attn: x = nn.functional.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, N + 1, -1) x = self.drop(x) if pre_logits: x = self._pool(x, H, W) return x x = self.proj(x) x = self._pool(x, H, W) return x class AttentionPool2d(nn.Module): """ Attention based 2D feature pooling w/ learned (absolute) pos embedding. This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. It was based on impl in CLIP by OpenAI https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. """ fused_attn: torch.jit.Final[bool] def __init__( self, in_features: int, feat_size: Union[int, Tuple[int, int]] = 7, out_features: Optional[int] = None, embed_dim: Optional[int] = None, head_dim: Optional[int] = 64, num_heads: Optional[int] = None, qkv_bias: bool = True, qkv_separate: bool = False, pool_type: str = 'token', class_token: bool = False, drop_rate: float = 0., ): super().__init__() assert pool_type in ('', 'token') self.embed_dim = embed_dim = embed_dim or in_features self.in_features = in_features self.out_features = out_features or in_features if num_heads is not None: assert embed_dim % num_heads == 0 head_dim = embed_dim // num_heads else: assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim self.feat_size = to_2tuple(feat_size) self.seq_len = self.feat_size[0] * self.feat_size[1] self.num_heads = num_heads self.head_dim = head_dim self.pool_type = pool_type self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() if class_token: self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) else: self.cls_token = None if qkv_separate: self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) self.qkv = None else: self.q = self.k = self.v = None self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) self.drop = nn.Dropout(drop_rate) self.proj = nn.Linear(embed_dim, self.out_features) self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features)) self.init_weights() def init_weights(self, zero_init_last: bool = False): if self.qkv is None: in_features = self.q.in_features trunc_normal_(self.q.weight, std=in_features ** -0.5) nn.init.zeros_(self.q.bias) trunc_normal_(self.k.weight, std=in_features ** -0.5) nn.init.zeros_(self.k.bias) trunc_normal_(self.v.weight, std=in_features ** -0.5) nn.init.zeros_(self.v.bias) else: in_features = self.qkv.in_features trunc_normal_(self.qkv.weight, std=in_features ** -0.5) nn.init.zeros_(self.qkv.bias) trunc_normal_(self.pos_embed, std=in_features ** -0.5) def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): # NOTE: this module is being used as a head, so need compatible reset() if pool_type is not None: assert pool_type in ('', 'token') self.pool_type = pool_type if num_classes is not None: self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() self.out_features = num_classes if num_classes > 0 else self.embed_dim def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: if self.pool_type == 'token': x = x[:, 0] else: # if not pooled, return spatial output without token x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) return x def forward(self, x, pre_logits: bool = False): B, _, H, W = x.shape N = H * W x = x.flatten(2).transpose(1, 2) if self.cls_token is None: x = torch.cat([x.mean(1, keepdim=True), x], dim=1) else: x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1) x = x + pos_embed if self.qkv is None: q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) else: x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = x.unbind(0) if self.fused_attn: x = nn.functional.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, N + 1, -1) x = self.drop(x) if pre_logits: x = self._pool(x, H, W) return x x = self.proj(x) x = self._pool(x, H, W) return x