""" Lion Optimizer Paper: `Symbolic Discovery of Optimization Algorithms` - https://arxiv.org/abs/2302.06675 Original Impl: https://github.com/google/automl/tree/master/lion """ # Copyright 2023 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import List, Optional, Tuple import torch from torch.optim.optimizer import Optimizer from ._types import ParamsT class Lion(Optimizer): r"""Implements Lion algorithm.""" def __init__( self, params: ParamsT, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, caution: bool = False, maximize: bool = False, foreach: Optional[bool] = None, ): """Initialize the hyperparameters. Args: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate betas: coefficients used for computing running averages of gradient and its square weight_decay: weight decay coefficient caution: apply caution """ if not 0.0 <= lr: raise ValueError('Invalid learning rate: {}'.format(lr)) if not 0.0 <= betas[0] < 1.0: raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) defaults = dict( lr=lr, betas=betas, weight_decay=weight_decay, caution=caution, foreach=foreach, maximize=maximize, ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('caution', False) group.setdefault('maximize', False) group.setdefault('foreach', None) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure: A closure that reevaluates the model and returns the loss. Returns: the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('Lion does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) lion( params_with_grad, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], caution=group['caution'], maximize=group['maximize'], foreach=group['foreach'], ) return loss def lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim maximize: bool = False, foreach: bool = None, *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, ): r"""Functional API that performs Lion algorithm computation. """ if foreach is None: try: # cannot do foreach if this overload doesn't exist when caution enabled foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() except: foreach = False if foreach and torch.jit.is_scripting(): raise RuntimeError('torch.jit.script not supported with foreach optimizers') if foreach and not torch.jit.is_scripting(): func = _multi_tensor_lion else: func = _single_tensor_lion func( params, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, caution=caution, maximize=maximize, ) def _single_tensor_lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, maximize: bool, ): for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] if torch.is_complex(param): grad = torch.view_as_real(grad) exp_avg = torch.view_as_real(exp_avg) param = torch.view_as_real(param) # Perform stepweight decay param.mul_(1 - lr * weight_decay) # Weight update update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1).sign_() if caution: # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 mask = (update * grad > 0).to(grad.dtype) mask.div_(mask.mean().clamp_(min=1e-3)) update.mul_(mask) param.add_(update, alpha=-lr) # Decay the momentum running average coefficient exp_avg.lerp_(grad, 1 - beta2) def _multi_tensor_lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, maximize: bool, ): if len(params) == 0: return if maximize: grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment] grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] # Perform stepweight decay torch._foreach_mul_(params, 1 - lr * weight_decay) # Weight update updates = torch._foreach_mul(exp_avgs, beta1) torch._foreach_add_(updates, grads, alpha=1 - beta1) updates = [u.sign_() for u in updates] if caution: # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 masks = torch._foreach_mul(updates, grads) masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] mask_scale = [m.mean() for m in masks] torch._foreach_maximum_(mask_scale, 1e-3) torch._foreach_div_(masks, mask_scale) torch._foreach_mul_(updates, masks) torch._foreach_add_(params, updates, alpha=-lr) # Decay the momentum running average coefficient torch._foreach_mul_(exp_avgs, beta2) torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2)