""" RMSProp modified to behave like Tensorflow impl Originally cut & paste from PyTorch RMSProp https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE Modifications Copyright 2021 Ross Wightman """ import torch from torch.optim import Optimizer from ._types import ParamsT class RMSpropTF(Optimizer): """Implements RMSprop algorithm (TensorFlow style epsilon) NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt and a few other modifications to closer match Tensorflow for matching hyper-params. Noteworthy changes include: 1. Epsilon applied inside square-root 2. square_avg initialized to ones 3. LR scaling of update accumulated in momentum buffer Proposed by G. Hinton in his `course `_. The centered version first appears in `Generating Sequences With Recurrent Neural Networks `_. Args: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate momentum: momentum factor alpha: smoothing (decay) constant eps: term added to the denominator to improve numerical stability centered: if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay: weight decay (L2 penalty) (default: 0) decoupled_decay: decoupled weight decay as per https://arxiv.org/abs/1711.05101 lr_in_momentum: learning rate scaling is included in the momentum buffer update as per defaults in Tensorflow caution: apply caution """ def __init__( self, params: ParamsT, lr: float = 1e-2, alpha: float = 0.9, eps: float = 1e-10, weight_decay: float = 0, momentum: float = 0., centered: bool = False, decoupled_decay: bool = False, lr_in_momentum: bool = True, caution: bool = False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= momentum: raise ValueError("Invalid momentum value: {}".format(momentum)) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= alpha: raise ValueError("Invalid alpha value: {}".format(alpha)) defaults = dict( lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay, decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum, caution=caution, ) super(RMSpropTF, self).__init__(params, defaults) def __setstate__(self, state): super(RMSpropTF, self).__setstate__(state) for group in self.param_groups: group.setdefault('momentum', 0) group.setdefault('centered', False) group.setdefault('caution', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError('RMSprop does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['square_avg'] = torch.ones_like(p) # PyTorch inits to zero if group['momentum'] > 0: state['momentum_buffer'] = torch.zeros_like(p) if group['centered']: state['grad_avg'] = torch.zeros_like(p) square_avg = state['square_avg'] one_minus_alpha = 1. - group['alpha'] state['step'] += 1 if group['weight_decay'] != 0: if group['decoupled_decay']: p.mul_(1. - group['lr'] * group['weight_decay']) else: grad = grad.add(p, alpha=group['weight_decay']) # Tensorflow order of ops for updating squared avg square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha) # square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) # PyTorch original if group['centered']: grad_avg = state['grad_avg'] grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add(group['eps']).sqrt_() # eps in sqrt # grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) # PyTorch original else: avg = square_avg.add(group['eps']).sqrt_() # eps moved in sqrt if group['momentum'] > 0: buf = state['momentum_buffer'] buf.mul_(group['momentum']) def _apply_caution(_m, _g): # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 mask = (_m * _g > 0).to(_g.dtype) mask.div_(mask.mean().clamp_(min=1e-3)) return _m * mask if group['lr_in_momentum']: # Tensorflow accumulates the LR scaling in the momentum buffer buf.addcdiv_(grad, avg, value=group['lr']) if group['caution']: buf = _apply_caution(buf, grad) p.add_(-buf) else: # PyTorch scales the param update by LR buf.addcdiv_(grad, avg) if group['caution']: buf = _apply_caution(buf, grad) p.add_(buf, alpha=-group['lr']) else: p.addcdiv_(grad, avg, value=-group['lr']) return loss