""" SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 Code: https://github.com/clovaai/AdamP Copyright (c) 2020-present NAVER Corp. MIT license """ import torch import torch.nn.functional as F from torch.optim.optimizer import Optimizer, required import math from .adamp import projection class SGDP(Optimizer): def __init__( self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, eps=1e-8, delta=0.1, wd_ratio=0.1 ): defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio, ) super(SGDP, self).__init__(params, defaults) @torch.no_grad() def step(self, closure=None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] # State initialization if len(state) == 0: state['momentum'] = torch.zeros_like(p) # SGD buf = state['momentum'] buf.mul_(momentum).add_(grad, alpha=1. - dampening) if nesterov: d_p = grad + momentum * buf else: d_p = buf # Projection wd_ratio = 1. if len(p.shape) > 1: d_p, wd_ratio = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps']) # Weight decay if weight_decay != 0: p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum)) # Step p.add_(d_p, alpha=-group['lr']) return loss