|
import os
|
|
import numpy as np
|
|
import pickle as pkl
|
|
import yaml
|
|
from collections import defaultdict
|
|
import tensorflow.compat.v1 as tf
|
|
import facenet
|
|
from PIL import Image
|
|
|
|
infomation = defaultdict(dict)
|
|
cfg = yaml.load(open('config.yaml', 'r'), Loader=yaml.FullLoader)
|
|
MODEL_DIR = cfg['PATH']['MODEL_DIR']
|
|
CLASSIFIER_DIR = cfg['PATH']['CLASSIFIER_DIR']
|
|
NPY_DIR = cfg['PATH']['NPY_DIR']
|
|
TRAIN_IMG_DIR = cfg['PATH']['TRAIN_IMG_DIR']
|
|
|
|
def get_elements_dir(x):
|
|
path = x
|
|
return path
|
|
|
|
def load_essentail_components():
|
|
model_dir = get_elements_dir(MODEL_DIR)
|
|
classifier_filename = get_elements_dir(CLASSIFIER_DIR)
|
|
npy = get_elements_dir(NPY_DIR)
|
|
train_img = get_elements_dir(TRAIN_IMG_DIR)
|
|
return model_dir, classifier_filename, npy, train_img
|
|
|
|
def gpu_session():
|
|
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
|
|
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
|
|
return sess
|
|
|
|
def configure_mtcnn(sess, npy, train_img):
|
|
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)
|
|
minsize = 30
|
|
threshold = [0.7, 0.8, 0.8]
|
|
factor = 0.709
|
|
margin = 44
|
|
batch_size = 100
|
|
image_size = 182
|
|
input_image_size = 160
|
|
HumanNames = os.listdir(train_img)
|
|
HumanNames.sort()
|
|
|
|
def recognize(image):
|
|
model_dir, classifier_filename, npy, train_img = load_essentail_components()
|
|
|
|
with tf.Graph().as_default():
|
|
sess = gpu_session()
|
|
with sess.as_default():
|
|
configure_mtcnn(sess, npy, train_img)
|
|
print('Loading Model ...')
|
|
facenet.load_model(model=model_dir)
|
|
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
|
|
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
|
|
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
|
|
embedding_size = embeddings.get_shape()[1]
|
|
classifier_filename_exp = os.path.expanduser(classifier_filename)
|
|
with open(classifier_filename_exp, 'rb') as infile:
|
|
(model, class_names) = pickle.load(infile, encoding='latin1')
|
|
|
|
if image.ndim == 2:
|
|
image = facenet.to_rgb(image)
|
|
bounding_boxes, _ = detect_face.detect_face(image, minsize, pnet, rnet, onet, threshold, factor)
|
|
faceNum = bounding_boxes.shape[0]
|
|
|
|
|