|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import numpy as np |
|
import facenet |
|
import os |
|
import math |
|
import pickle |
|
from sklearn.svm import SVC |
|
import sys |
|
import tensorflow.compat.v1 as tf |
|
|
|
class training: |
|
def __init__(self, datadir, modeldir,classifier_filename): |
|
self.datadir = datadir |
|
self.modeldir = modeldir |
|
self.classifier_filename = classifier_filename |
|
|
|
def main_train(self): |
|
with tf.Graph().as_default(): |
|
with tf.Session() as sess: |
|
img_data = facenet.get_dataset(self.datadir) |
|
path, label = facenet.get_image_paths_and_labels(img_data) |
|
print('Classes: %d' % len(img_data)) |
|
print('Images: %d' % len(path)) |
|
|
|
facenet.load_model(self.modeldir) |
|
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") |
|
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") |
|
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") |
|
embedding_size = embeddings.get_shape()[1] |
|
|
|
print('Extracting features of images for model') |
|
batch_size = 256 |
|
image_size = 160 |
|
nrof_images = len(path) |
|
nrof_batches_per_epoch = int(math.ceil(1.0 * nrof_images / batch_size)) |
|
emb_array = np.zeros((nrof_images, embedding_size)) |
|
for i in range(nrof_batches_per_epoch): |
|
start_index = i * batch_size |
|
end_index = min((i + 1) * batch_size, nrof_images) |
|
paths_batch = path[start_index:end_index] |
|
images = facenet.load_data(paths_batch, False, False, image_size) |
|
feed_dict = {images_placeholder: images, phase_train_placeholder: False} |
|
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict) |
|
|
|
classifier_file_name = os.path.expanduser(self.classifier_filename) |
|
|
|
|
|
print('Training Started') |
|
model = SVC(kernel='linear', probability=True) |
|
model.fit(emb_array, label) |
|
|
|
class_names = [cls.name.replace('_', ' ') for cls in img_data] |
|
|
|
|
|
with open(classifier_file_name, 'wb') as outfile: |
|
pickle.dump((model, class_names), outfile) |
|
return classifier_file_name |
|
|