|
""" Tensorflow implementation of the face detection / alignment algorithm found at |
|
https://github.com/kpzhang93/MTCNN_face_detection_alignment |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from six import string_types, iteritems |
|
|
|
import numpy as np |
|
import tensorflow.compat.v1 as tf |
|
|
|
import cv2 |
|
import os |
|
|
|
def layer(op): |
|
'''Decorator for composable network layers.''' |
|
|
|
def layer_decorated(self, *args, **kwargs): |
|
|
|
name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) |
|
|
|
if len(self.terminals) == 0: |
|
raise RuntimeError('No input variables found for layer %s.' % name) |
|
elif len(self.terminals) == 1: |
|
layer_input = self.terminals[0] |
|
else: |
|
layer_input = list(self.terminals) |
|
|
|
layer_output = op(self, layer_input, *args, **kwargs) |
|
|
|
self.layers[name] = layer_output |
|
|
|
self.feed(layer_output) |
|
|
|
return self |
|
|
|
return layer_decorated |
|
|
|
class Network(object): |
|
|
|
def __init__(self, inputs, trainable=True): |
|
|
|
self.inputs = inputs |
|
|
|
self.terminals = [] |
|
|
|
self.layers = dict(inputs) |
|
|
|
self.trainable = trainable |
|
|
|
self.setup() |
|
|
|
def setup(self): |
|
'''Construct the network. ''' |
|
raise NotImplementedError('Must be implemented by the subclass.') |
|
|
|
def load(self, data_path, session, ignore_missing=False): |
|
'''Load network weights. |
|
data_path: The path to the numpy-serialized network weights |
|
session: The current TensorFlow session |
|
ignore_missing: If true, serialized weights for missing layers are ignored. |
|
''' |
|
data_dict = np.load(data_path, allow_pickle=True, encoding='latin1').item() |
|
|
|
for op_name in data_dict: |
|
with tf.variable_scope(op_name, reuse=True): |
|
for param_name, data in iteritems(data_dict[op_name]): |
|
try: |
|
var = tf.get_variable(param_name) |
|
session.run(var.assign(data)) |
|
except ValueError: |
|
if not ignore_missing: |
|
raise |
|
|
|
def feed(self, *args): |
|
'''Set the input(s) for the next operation by replacing the terminal nodes. |
|
The arguments can be either layer names or the actual layers. |
|
''' |
|
assert len(args) != 0 |
|
self.terminals = [] |
|
for fed_layer in args: |
|
if isinstance(fed_layer, string_types): |
|
try: |
|
fed_layer = self.layers[fed_layer] |
|
except KeyError: |
|
raise KeyError('Unknown layer name fed: %s' % fed_layer) |
|
self.terminals.append(fed_layer) |
|
return self |
|
|
|
def get_output(self): |
|
'''Returns the current network output.''' |
|
return self.terminals[-1] |
|
|
|
def get_unique_name(self, prefix): |
|
'''Returns an index-suffixed unique name for the given prefix. |
|
This is used for auto-generating layer names based on the type-prefix. |
|
''' |
|
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 |
|
return '%s_%d' % (prefix, ident) |
|
|
|
def make_var(self, name, shape): |
|
'''Creates a new TensorFlow variable.''' |
|
return tf.get_variable(name, shape, trainable=self.trainable) |
|
|
|
def validate_padding(self, padding): |
|
'''Verifies that the padding is one of the supported ones.''' |
|
assert padding in ('SAME', 'VALID') |
|
|
|
@layer |
|
def conv(self, |
|
inp, |
|
k_h, |
|
k_w, |
|
c_o, |
|
s_h, |
|
s_w, |
|
name, |
|
relu=True, |
|
padding='SAME', |
|
group=1, |
|
biased=True): |
|
|
|
self.validate_padding(padding) |
|
|
|
c_i = int(inp.get_shape()[-1]) |
|
|
|
assert c_i % group == 0 |
|
assert c_o % group == 0 |
|
|
|
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) |
|
with tf.variable_scope(name) as scope: |
|
kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o]) |
|
|
|
output = convolve(inp, kernel) |
|
|
|
if biased: |
|
biases = self.make_var('biases', [c_o]) |
|
output = tf.nn.bias_add(output, biases) |
|
if relu: |
|
|
|
output = tf.nn.relu(output, name=scope.name) |
|
return output |
|
|
|
@layer |
|
def prelu(self, inp, name): |
|
with tf.variable_scope(name): |
|
i = int(inp.get_shape()[-1]) |
|
alpha = self.make_var('alpha', shape=(i,)) |
|
output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp)) |
|
return output |
|
|
|
@layer |
|
def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'): |
|
self.validate_padding(padding) |
|
return tf.nn.max_pool(inp, |
|
ksize=[1, k_h, k_w, 1], |
|
strides=[1, s_h, s_w, 1], |
|
padding=padding, |
|
name=name) |
|
|
|
@layer |
|
def fc(self, inp, num_out, name, relu=True): |
|
with tf.variable_scope(name): |
|
input_shape = inp.get_shape() |
|
if input_shape.ndims == 4: |
|
|
|
dim = 1 |
|
for d in input_shape[1:].as_list(): |
|
dim *= int(d) |
|
feed_in = tf.reshape(inp, [-1, dim]) |
|
else: |
|
feed_in, dim = (inp, input_shape.as_list()[-1]) |
|
weights = self.make_var('weights', shape=[dim, num_out]) |
|
biases = self.make_var('biases', [num_out]) |
|
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b |
|
fc = op(feed_in, weights, biases, name=name) |
|
return fc |
|
|
|
|
|
""" |
|
Multi dimensional softmax, |
|
refer to https://github.com/tensorflow/tensorflow/issues/210 |
|
compute softmax along the dimension of target |
|
the native softmax only supports batch_size x dimension |
|
""" |
|
@layer |
|
def softmax(self, target, axis, name=None): |
|
max_axis = tf.reduce_max(target, axis, keep_dims=True) |
|
target_exp = tf.exp(target-max_axis) |
|
normalize = tf.reduce_sum(target_exp, axis, keep_dims=True) |
|
softmax = tf.div(target_exp, normalize, name) |
|
return softmax |
|
|
|
class PNet(Network): |
|
def setup(self): |
|
(self.feed('data') |
|
.conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1') |
|
.prelu(name='PReLU1') |
|
.max_pool(2, 2, 2, 2, name='pool1') |
|
.conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2') |
|
.prelu(name='PReLU2') |
|
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3') |
|
.prelu(name='PReLU3') |
|
.conv(1, 1, 2, 1, 1, relu=False, name='conv4-1') |
|
.softmax(3,name='prob1')) |
|
|
|
(self.feed('PReLU3') |
|
.conv(1, 1, 4, 1, 1, relu=False, name='conv4-2')) |
|
|
|
class RNet(Network): |
|
def setup(self): |
|
(self.feed('data') |
|
.conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1') |
|
.prelu(name='prelu1') |
|
.max_pool(3, 3, 2, 2, name='pool1') |
|
.conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2') |
|
.prelu(name='prelu2') |
|
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2') |
|
.conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3') |
|
.prelu(name='prelu3') |
|
.fc(128, relu=False, name='conv4') |
|
.prelu(name='prelu4') |
|
.fc(2, relu=False, name='conv5-1') |
|
.softmax(1,name='prob1')) |
|
|
|
(self.feed('prelu4') |
|
.fc(4, relu=False, name='conv5-2')) |
|
|
|
class ONet(Network): |
|
def setup(self): |
|
(self.feed('data') |
|
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1') |
|
.prelu(name='prelu1') |
|
.max_pool(3, 3, 2, 2, name='pool1') |
|
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2') |
|
.prelu(name='prelu2') |
|
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2') |
|
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3') |
|
.prelu(name='prelu3') |
|
.max_pool(2, 2, 2, 2, name='pool3') |
|
.conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4') |
|
.prelu(name='prelu4') |
|
.fc(256, relu=False, name='conv5') |
|
.prelu(name='prelu5') |
|
.fc(2, relu=False, name='conv6-1') |
|
.softmax(1, name='prob1')) |
|
|
|
(self.feed('prelu5') |
|
.fc(4, relu=False, name='conv6-2')) |
|
|
|
(self.feed('prelu5') |
|
.fc(10, relu=False, name='conv6-3')) |
|
|
|
def create_mtcnn(sess, model_path): |
|
if not model_path: |
|
model_path,_ = os.path.split(os.path.realpath(__file__)) |
|
|
|
with tf.variable_scope('pnet'): |
|
data = tf.placeholder(tf.float32, (None,None,None,3), 'input') |
|
pnet = PNet({'data':data}) |
|
pnet.load(os.path.join(model_path, 'det1.npy'), sess) |
|
with tf.variable_scope('rnet'): |
|
data = tf.placeholder(tf.float32, (None,24,24,3), 'input') |
|
rnet = RNet({'data':data}) |
|
rnet.load(os.path.join(model_path, 'det2.npy'), sess) |
|
with tf.variable_scope('onet'): |
|
data = tf.placeholder(tf.float32, (None,48,48,3), 'input') |
|
onet = ONet({'data':data}) |
|
onet.load(os.path.join(model_path, 'det3.npy'), sess) |
|
|
|
pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) |
|
rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) |
|
onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) |
|
return pnet_fun, rnet_fun, onet_fun |
|
|
|
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): |
|
|
|
|
|
|
|
|
|
|
|
factor_count=0 |
|
total_boxes=np.empty((0, 9)) |
|
points=np.empty(0) |
|
h=img.shape[0] |
|
w=img.shape[1] |
|
minl=np.amin([h, w]) |
|
m=12.0/minsize |
|
minl=minl*m |
|
|
|
scales=[] |
|
while minl>=12: |
|
scales += [m*np.power(factor, factor_count)] |
|
minl = minl*factor |
|
factor_count += 1 |
|
|
|
|
|
for j in range(len(scales)): |
|
scale=scales[j] |
|
hs=int(np.ceil(h*scale)) |
|
ws=int(np.ceil(w*scale)) |
|
im_data = imresample(img, (hs, ws)) |
|
im_data = (im_data-127.5)*0.0078125 |
|
img_x = np.expand_dims(im_data, 0) |
|
img_y = np.transpose(img_x, (0,2,1,3)) |
|
out = pnet(img_y) |
|
out0 = np.transpose(out[0], (0,2,1,3)) |
|
out1 = np.transpose(out[1], (0,2,1,3)) |
|
|
|
boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) |
|
|
|
|
|
pick = nms(boxes.copy(), 0.5, 'Union') |
|
if boxes.size>0 and pick.size>0: |
|
boxes = boxes[pick,:] |
|
total_boxes = np.append(total_boxes, boxes, axis=0) |
|
|
|
numbox = total_boxes.shape[0] |
|
if numbox>0: |
|
pick = nms(total_boxes.copy(), 0.7, 'Union') |
|
total_boxes = total_boxes[pick,:] |
|
regw = total_boxes[:,2]-total_boxes[:,0] |
|
regh = total_boxes[:,3]-total_boxes[:,1] |
|
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw |
|
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh |
|
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw |
|
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh |
|
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) |
|
total_boxes = rerec(total_boxes.copy()) |
|
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) |
|
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) |
|
|
|
numbox = total_boxes.shape[0] |
|
if numbox>0: |
|
|
|
tempimg = np.zeros((24,24,3,numbox)) |
|
for k in range(0,numbox): |
|
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) |
|
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] |
|
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: |
|
tempimg[:,:,:,k] = imresample(tmp, (24, 24)) |
|
else: |
|
return np.empty() |
|
tempimg = (tempimg-127.5)*0.0078125 |
|
tempimg1 = np.transpose(tempimg, (3,1,0,2)) |
|
out = rnet(tempimg1) |
|
out0 = np.transpose(out[0]) |
|
out1 = np.transpose(out[1]) |
|
score = out1[1,:] |
|
ipass = np.where(score>threshold[1]) |
|
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) |
|
mv = out0[:,ipass[0]] |
|
if total_boxes.shape[0]>0: |
|
pick = nms(total_boxes, 0.7, 'Union') |
|
total_boxes = total_boxes[pick,:] |
|
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) |
|
total_boxes = rerec(total_boxes.copy()) |
|
|
|
numbox = total_boxes.shape[0] |
|
if numbox>0: |
|
|
|
total_boxes = np.fix(total_boxes).astype(np.int32) |
|
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) |
|
tempimg = np.zeros((48,48,3,numbox)) |
|
for k in range(0,numbox): |
|
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) |
|
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] |
|
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: |
|
tempimg[:,:,:,k] = imresample(tmp, (48, 48)) |
|
else: |
|
return np.empty() |
|
tempimg = (tempimg-127.5)*0.0078125 |
|
tempimg1 = np.transpose(tempimg, (3,1,0,2)) |
|
out = onet(tempimg1) |
|
out0 = np.transpose(out[0]) |
|
out1 = np.transpose(out[1]) |
|
out2 = np.transpose(out[2]) |
|
score = out2[1,:] |
|
points = out1 |
|
ipass = np.where(score>threshold[2]) |
|
points = points[:,ipass[0]] |
|
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) |
|
mv = out0[:,ipass[0]] |
|
|
|
w = total_boxes[:,2]-total_boxes[:,0]+1 |
|
h = total_boxes[:,3]-total_boxes[:,1]+1 |
|
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 |
|
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 |
|
if total_boxes.shape[0]>0: |
|
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) |
|
pick = nms(total_boxes.copy(), 0.7, 'Min') |
|
total_boxes = total_boxes[pick,:] |
|
points = points[:,pick] |
|
|
|
return total_boxes, points |
|
|
|
|
|
def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor): |
|
|
|
|
|
|
|
|
|
|
|
all_scales = [None] * len(images) |
|
images_with_boxes = [None] * len(images) |
|
|
|
for i in range(len(images)): |
|
images_with_boxes[i] = {'total_boxes': np.empty((0, 9))} |
|
|
|
|
|
for index, img in enumerate(images): |
|
all_scales[index] = [] |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
minsize = int(detection_window_size_ratio * np.minimum(w, h)) |
|
factor_count = 0 |
|
minl = np.amin([h, w]) |
|
if minsize <= 12: |
|
minsize = 12 |
|
|
|
m = 12.0 / minsize |
|
minl = minl * m |
|
while minl >= 12: |
|
all_scales[index].append(m * np.power(factor, factor_count)) |
|
minl = minl * factor |
|
factor_count += 1 |
|
|
|
|
|
|
|
|
|
|
|
images_obj_per_resolution = {} |
|
|
|
|
|
|
|
for index, scales in enumerate(all_scales): |
|
h = images[index].shape[0] |
|
w = images[index].shape[1] |
|
|
|
for scale in scales: |
|
hs = int(np.ceil(h * scale)) |
|
ws = int(np.ceil(w * scale)) |
|
|
|
if (ws, hs) not in images_obj_per_resolution: |
|
images_obj_per_resolution[(ws, hs)] = [] |
|
|
|
im_data = imresample(images[index], (hs, ws)) |
|
im_data = (im_data - 127.5) * 0.0078125 |
|
img_y = np.transpose(im_data, (1, 0, 2)) |
|
images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index}) |
|
|
|
for resolution in images_obj_per_resolution: |
|
images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]] |
|
outs = pnet(images_per_resolution) |
|
|
|
for index in range(len(outs[0])): |
|
scale = images_obj_per_resolution[resolution][index]['scale'] |
|
image_index = images_obj_per_resolution[resolution][index]['index'] |
|
out0 = np.transpose(outs[0][index], (1, 0, 2)) |
|
out1 = np.transpose(outs[1][index], (1, 0, 2)) |
|
|
|
boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0]) |
|
|
|
|
|
pick = nms(boxes.copy(), 0.5, 'Union') |
|
if boxes.size > 0 and pick.size > 0: |
|
boxes = boxes[pick, :] |
|
images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'], |
|
boxes, |
|
axis=0) |
|
|
|
for index, image_obj in enumerate(images_with_boxes): |
|
numbox = image_obj['total_boxes'].shape[0] |
|
if numbox > 0: |
|
h = images[index].shape[0] |
|
w = images[index].shape[1] |
|
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union') |
|
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] |
|
regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] |
|
regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] |
|
qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw |
|
qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh |
|
qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw |
|
qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh |
|
image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]])) |
|
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) |
|
image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32) |
|
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) |
|
|
|
numbox = image_obj['total_boxes'].shape[0] |
|
tempimg = np.zeros((24, 24, 3, numbox)) |
|
|
|
if numbox > 0: |
|
for k in range(0, numbox): |
|
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) |
|
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] |
|
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: |
|
tempimg[:, :, :, k] = imresample(tmp, (24, 24)) |
|
else: |
|
return np.empty() |
|
|
|
tempimg = (tempimg - 127.5) * 0.0078125 |
|
image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) |
|
|
|
|
|
|
|
|
|
|
|
bulk_rnet_input = np.empty((0, 24, 24, 3)) |
|
for index, image_obj in enumerate(images_with_boxes): |
|
if 'rnet_input' in image_obj: |
|
bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0) |
|
|
|
out = rnet(bulk_rnet_input) |
|
out0 = np.transpose(out[0]) |
|
out1 = np.transpose(out[1]) |
|
score = out1[1, :] |
|
|
|
i = 0 |
|
for index, image_obj in enumerate(images_with_boxes): |
|
if 'rnet_input' not in image_obj: |
|
continue |
|
|
|
rnet_input_count = image_obj['rnet_input'].shape[0] |
|
score_per_image = score[i:i + rnet_input_count] |
|
out0_per_image = out0[:, i:i + rnet_input_count] |
|
|
|
ipass = np.where(score_per_image > threshold[1]) |
|
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), |
|
np.expand_dims(score_per_image[ipass].copy(), 1)]) |
|
|
|
mv = out0_per_image[:, ipass[0]] |
|
|
|
if image_obj['total_boxes'].shape[0] > 0: |
|
h = images[index].shape[0] |
|
w = images[index].shape[1] |
|
pick = nms(image_obj['total_boxes'], 0.7, 'Union') |
|
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] |
|
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick])) |
|
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) |
|
|
|
numbox = image_obj['total_boxes'].shape[0] |
|
|
|
if numbox > 0: |
|
tempimg = np.zeros((48, 48, 3, numbox)) |
|
image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32) |
|
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) |
|
|
|
for k in range(0, numbox): |
|
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) |
|
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] |
|
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: |
|
tempimg[:, :, :, k] = imresample(tmp, (48, 48)) |
|
else: |
|
return np.empty() |
|
tempimg = (tempimg - 127.5) * 0.0078125 |
|
image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) |
|
|
|
i += rnet_input_count |
|
|
|
|
|
|
|
|
|
|
|
bulk_onet_input = np.empty((0, 48, 48, 3)) |
|
for index, image_obj in enumerate(images_with_boxes): |
|
if 'onet_input' in image_obj: |
|
bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0) |
|
|
|
out = onet(bulk_onet_input) |
|
|
|
out0 = np.transpose(out[0]) |
|
out1 = np.transpose(out[1]) |
|
out2 = np.transpose(out[2]) |
|
score = out2[1, :] |
|
points = out1 |
|
|
|
i = 0 |
|
ret = [] |
|
for index, image_obj in enumerate(images_with_boxes): |
|
if 'onet_input' not in image_obj: |
|
ret.append(None) |
|
continue |
|
|
|
onet_input_count = image_obj['onet_input'].shape[0] |
|
|
|
out0_per_image = out0[:, i:i + onet_input_count] |
|
score_per_image = score[i:i + onet_input_count] |
|
points_per_image = points[:, i:i + onet_input_count] |
|
|
|
ipass = np.where(score_per_image > threshold[2]) |
|
points_per_image = points_per_image[:, ipass[0]] |
|
|
|
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), |
|
np.expand_dims(score_per_image[ipass].copy(), 1)]) |
|
mv = out0_per_image[:, ipass[0]] |
|
|
|
w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1 |
|
h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1 |
|
points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile( |
|
image_obj['total_boxes'][:, 0], (5, 1)) - 1 |
|
points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile( |
|
image_obj['total_boxes'][:, 1], (5, 1)) - 1 |
|
|
|
if image_obj['total_boxes'].shape[0] > 0: |
|
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv)) |
|
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min') |
|
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] |
|
points_per_image = points_per_image[:, pick] |
|
|
|
ret.append((image_obj['total_boxes'], points_per_image)) |
|
else: |
|
ret.append(None) |
|
|
|
i += onet_input_count |
|
|
|
return ret |
|
|
|
|
|
|
|
def bbreg(boundingbox,reg): |
|
|
|
if reg.shape[1]==1: |
|
reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) |
|
|
|
w = boundingbox[:,2]-boundingbox[:,0]+1 |
|
h = boundingbox[:,3]-boundingbox[:,1]+1 |
|
b1 = boundingbox[:,0]+reg[:,0]*w |
|
b2 = boundingbox[:,1]+reg[:,1]*h |
|
b3 = boundingbox[:,2]+reg[:,2]*w |
|
b4 = boundingbox[:,3]+reg[:,3]*h |
|
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) |
|
return boundingbox |
|
|
|
def generateBoundingBox(imap, reg, scale, t): |
|
|
|
stride=2 |
|
cellsize=12 |
|
|
|
imap = np.transpose(imap) |
|
dx1 = np.transpose(reg[:,:,0]) |
|
dy1 = np.transpose(reg[:,:,1]) |
|
dx2 = np.transpose(reg[:,:,2]) |
|
dy2 = np.transpose(reg[:,:,3]) |
|
y, x = np.where(imap >= t) |
|
if y.shape[0]==1: |
|
dx1 = np.flipud(dx1) |
|
dy1 = np.flipud(dy1) |
|
dx2 = np.flipud(dx2) |
|
dy2 = np.flipud(dy2) |
|
score = imap[(y,x)] |
|
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) |
|
if reg.size==0: |
|
reg = np.empty((0,3)) |
|
bb = np.transpose(np.vstack([y,x])) |
|
q1 = np.fix((stride*bb+1)/scale) |
|
q2 = np.fix((stride*bb+cellsize-1+1)/scale) |
|
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) |
|
return boundingbox, reg |
|
|
|
|
|
def nms(boxes, threshold, method): |
|
if boxes.size==0: |
|
return np.empty((0,3)) |
|
x1 = boxes[:,0] |
|
y1 = boxes[:,1] |
|
x2 = boxes[:,2] |
|
y2 = boxes[:,3] |
|
s = boxes[:,4] |
|
area = (x2-x1+1) * (y2-y1+1) |
|
I = np.argsort(s) |
|
pick = np.zeros_like(s, dtype=np.int16) |
|
counter = 0 |
|
while I.size>0: |
|
i = I[-1] |
|
pick[counter] = i |
|
counter += 1 |
|
idx = I[0:-1] |
|
xx1 = np.maximum(x1[i], x1[idx]) |
|
yy1 = np.maximum(y1[i], y1[idx]) |
|
xx2 = np.minimum(x2[i], x2[idx]) |
|
yy2 = np.minimum(y2[i], y2[idx]) |
|
w = np.maximum(0.0, xx2-xx1+1) |
|
h = np.maximum(0.0, yy2-yy1+1) |
|
inter = w * h |
|
if method is 'Min': |
|
o = inter / np.minimum(area[i], area[idx]) |
|
else: |
|
o = inter / (area[i] + area[idx] - inter) |
|
I = I[np.where(o<=threshold)] |
|
pick = pick[0:counter] |
|
return pick |
|
|
|
|
|
def pad(total_boxes, w, h): |
|
|
|
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) |
|
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) |
|
numbox = total_boxes.shape[0] |
|
|
|
dx = np.ones((numbox), dtype=np.int32) |
|
dy = np.ones((numbox), dtype=np.int32) |
|
edx = tmpw.copy().astype(np.int32) |
|
edy = tmph.copy().astype(np.int32) |
|
|
|
x = total_boxes[:,0].copy().astype(np.int32) |
|
y = total_boxes[:,1].copy().astype(np.int32) |
|
ex = total_boxes[:,2].copy().astype(np.int32) |
|
ey = total_boxes[:,3].copy().astype(np.int32) |
|
|
|
tmp = np.where(ex>w) |
|
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) |
|
ex[tmp] = w |
|
|
|
tmp = np.where(ey>h) |
|
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) |
|
ey[tmp] = h |
|
|
|
tmp = np.where(x<1) |
|
dx.flat[tmp] = np.expand_dims(2-x[tmp],1) |
|
x[tmp] = 1 |
|
|
|
tmp = np.where(y<1) |
|
dy.flat[tmp] = np.expand_dims(2-y[tmp],1) |
|
y[tmp] = 1 |
|
|
|
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph |
|
|
|
|
|
def rerec(bboxA): |
|
|
|
h = bboxA[:,3]-bboxA[:,1] |
|
w = bboxA[:,2]-bboxA[:,0] |
|
l = np.maximum(w, h) |
|
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 |
|
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 |
|
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) |
|
return bboxA |
|
|
|
def imresample(img, sz): |
|
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) |
|
return im_data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|