FaceRecognition / face_recognition.py
datnguyentien204's picture
Upload folder using huggingface_hub (#1)
f1ce61b verified
raw
history blame
5.46 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cv2
import numpy as np
import facenet
import detect_face
import os
import time
import pickle
from PIL import Image
import tensorflow.compat.v1 as tf
source = 0
modeldir = './model/20180402-114759.pb'
classifier_filename = './class/classifier.pkl'
npy ='./npy'
train_img ="./train_img"
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)
minsize = 30 # minimum size of face
threshold = [0.7, 0.8, 0.8] # three steps's threshold
factor = 0.709 # scale factor
margin = 44
batch_size = 100 #1000
image_size = 182
input_image_size = 160
HumanNames = os.listdir(train_img)
HumanNames.sort()
print('Loading Model')
facenet.load_model(modeldir)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
classifier_filename_exp = os.path.expanduser(classifier_filename)
with open(classifier_filename_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile, encoding='latin1')
video_capture = cv2.VideoCapture(source)
print('Start Recognition')
while True:
ret, frame = video_capture.read()
#frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5) #resize frame (optional)
# timer = time.time()
if frame.ndim == 2:
frame = facenet.to_rgb(frame)
bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor)
faceNum = bounding_boxes.shape[0]
if faceNum > 0:
det = bounding_boxes[:, 0:4]
img_size = np.asarray(frame.shape)[0:2]
cropped = []
scaled = []
scaled_reshape = []
for i in range(faceNum):
emb_array = np.zeros((1, embedding_size))
x_min = int(det[i][0])
y_min = int(det[i][1])
x_max = int(det[i][2])
y_max = int(det[i][3])
try:
# inner exception
if x_min <= 0 or y_min <= 0 or x_max >= len(frame[0]) or y_max >= len(frame):
print('Face is very close!')
continue
cropped.append(frame[y_min: y_max, x_min: x_max, :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(np.array(Image. fromarray(cropped[i]). resize((image_size, image_size))))
scaled[i] = cv2.resize(scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1, input_image_size, input_image_size, 3))
feed_dict = {images_placeholder: scaled_reshape[i], phase_train_placeholder: False}
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
best_class_indices = np.argmax(predictions, axis=1)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
if best_class_probabilities > 0.5:
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (236, 0, 242), 2) #boxing face
for H_i in HumanNames:
if HumanNames[best_class_indices[0]] == H_i:
result_names = HumanNames[best_class_indices[0]]
print("Predictions : [ name: {} , accuracy: {:.3f} ]".format(HumanNames[best_class_indices[0]], best_class_probabilities[0]))
# cv2.rectangle(frame, (x_min, y_min-20), (x_max, y_min-2), (0, 255,255), -1)
cv2.putText(frame, result_names, (x_min, y_min-5), cv2.FONT_HERSHEY_COMPLEX_SMALL,
1, (236, 0, 242), thickness=1, lineType=1)
else:
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (236, 0, 242), 2)
# cv2.rectangle(frame, (x_min, y_min-20), (x_max, y_min-2), (0, 255, 255), -1)
cv2.putText(frame, "????????", (x_min, y_min-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (236, 0, 242), thickness=1, lineType=1)
except Exception as ex:
print("There's an error occurred: ", str(ex))
cv2.imshow('Face Recognition', frame)
key = cv2.waitKey(1)
if key == 113: # "q"
break
video_capture.release()
cv2.destroyAllWindows()