|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import cv2 |
|
import numpy as np |
|
import facenet |
|
import detect_face |
|
import os |
|
import time |
|
import pickle |
|
from PIL import Image |
|
import tensorflow.compat.v1 as tf |
|
|
|
source = 0 |
|
modeldir = './model/20180402-114759.pb' |
|
classifier_filename = './class/classifier.pkl' |
|
npy ='./npy' |
|
train_img ="./train_img" |
|
with tf.Graph().as_default(): |
|
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) |
|
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) |
|
with sess.as_default(): |
|
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy) |
|
minsize = 30 |
|
threshold = [0.7, 0.8, 0.8] |
|
factor = 0.709 |
|
margin = 44 |
|
batch_size = 100 |
|
image_size = 182 |
|
input_image_size = 160 |
|
HumanNames = os.listdir(train_img) |
|
HumanNames.sort() |
|
print('Loading Model') |
|
facenet.load_model(modeldir) |
|
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") |
|
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") |
|
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") |
|
embedding_size = embeddings.get_shape()[1] |
|
classifier_filename_exp = os.path.expanduser(classifier_filename) |
|
with open(classifier_filename_exp, 'rb') as infile: |
|
(model, class_names) = pickle.load(infile, encoding='latin1') |
|
|
|
video_capture = cv2.VideoCapture(source) |
|
print('Start Recognition') |
|
while True: |
|
ret, frame = video_capture.read() |
|
|
|
|
|
if frame.ndim == 2: |
|
frame = facenet.to_rgb(frame) |
|
bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor) |
|
faceNum = bounding_boxes.shape[0] |
|
if faceNum > 0: |
|
det = bounding_boxes[:, 0:4] |
|
img_size = np.asarray(frame.shape)[0:2] |
|
cropped = [] |
|
scaled = [] |
|
scaled_reshape = [] |
|
for i in range(faceNum): |
|
emb_array = np.zeros((1, embedding_size)) |
|
x_min = int(det[i][0]) |
|
y_min = int(det[i][1]) |
|
x_max = int(det[i][2]) |
|
y_max = int(det[i][3]) |
|
try: |
|
|
|
if x_min <= 0 or y_min <= 0 or x_max >= len(frame[0]) or y_max >= len(frame): |
|
print('Face is very close!') |
|
continue |
|
cropped.append(frame[y_min: y_max, x_min: x_max, :]) |
|
cropped[i] = facenet.flip(cropped[i], False) |
|
scaled.append(np.array(Image. fromarray(cropped[i]). resize((image_size, image_size)))) |
|
scaled[i] = cv2.resize(scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC) |
|
scaled[i] = facenet.prewhiten(scaled[i]) |
|
scaled_reshape.append(scaled[i].reshape(-1, input_image_size, input_image_size, 3)) |
|
feed_dict = {images_placeholder: scaled_reshape[i], phase_train_placeholder: False} |
|
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict) |
|
predictions = model.predict_proba(emb_array) |
|
best_class_indices = np.argmax(predictions, axis=1) |
|
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices] |
|
|
|
if best_class_probabilities > 0.5: |
|
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (236, 0, 242), 2) |
|
for H_i in HumanNames: |
|
if HumanNames[best_class_indices[0]] == H_i: |
|
result_names = HumanNames[best_class_indices[0]] |
|
print("Predictions : [ name: {} , accuracy: {:.3f} ]".format(HumanNames[best_class_indices[0]], best_class_probabilities[0])) |
|
|
|
cv2.putText(frame, result_names, (x_min, y_min-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, |
|
1, (236, 0, 242), thickness=1, lineType=1) |
|
|
|
else: |
|
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (236, 0, 242), 2) |
|
|
|
cv2.putText(frame, "????????", (x_min, y_min-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (236, 0, 242), thickness=1, lineType=1) |
|
except Exception as ex: |
|
print("There's an error occurred: ", str(ex)) |
|
|
|
cv2.imshow('Face Recognition', frame) |
|
key = cv2.waitKey(1) |
|
if key == 113: |
|
break |
|
video_capture.release() |
|
cv2.destroyAllWindows() |