|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from scipy import misc |
|
import os |
|
import tensorflow.compat.v1 as tf |
|
|
|
import numpy as np |
|
import facenet |
|
import detect_face |
|
import imageio |
|
from PIL import Image |
|
|
|
class preprocesses: |
|
def __init__(self, input_datadir, output_datadir): |
|
self.input_datadir = input_datadir |
|
self.output_datadir = output_datadir |
|
|
|
def collect_data(self): |
|
output_dir = os.path.expanduser(self.output_datadir) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
dataset = facenet.get_dataset(self.input_datadir) |
|
with tf.Graph().as_default(): |
|
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) |
|
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) |
|
with sess.as_default(): |
|
pnet, rnet, onet = detect_face.create_mtcnn(sess, './npy') |
|
|
|
minsize = 20 |
|
threshold = [0.5, 0.6, 0.6] |
|
factor = 0.709 |
|
margin = 44 |
|
image_size = 182 |
|
|
|
random_key = np.random.randint(0, high=99999) |
|
bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) |
|
|
|
with open(bounding_boxes_filename, "w") as text_file: |
|
nrof_images_total = 0 |
|
nrof_successfully_aligned = 0 |
|
for cls in dataset: |
|
output_class_dir = os.path.join(output_dir, cls.name) |
|
if not os.path.exists(output_class_dir): |
|
os.makedirs(output_class_dir) |
|
for image_path in cls.image_paths: |
|
nrof_images_total += 1 |
|
filename = os.path.splitext(os.path.split(image_path)[1])[0] |
|
output_filename = os.path.join(output_class_dir, filename + '.png') |
|
print("Image: %s" % image_path) |
|
if not os.path.exists(output_filename): |
|
try: |
|
img = imageio.imread(image_path) |
|
except (IOError, ValueError, IndexError) as e: |
|
errorMessage = '{}: {}'.format(image_path, e) |
|
print(errorMessage) |
|
else: |
|
if img.ndim < 2: |
|
print('Unable to align "%s"' % image_path) |
|
text_file.write('%s\n' % (output_filename)) |
|
continue |
|
if img.ndim == 2: |
|
img = facenet.to_rgb(img) |
|
print('to_rgb data dimension: ', img.ndim) |
|
img = img[:, :, 0:3] |
|
|
|
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, |
|
factor) |
|
nrof_faces = bounding_boxes.shape[0] |
|
print('No of Detected Face: %d' % nrof_faces) |
|
if nrof_faces > 0: |
|
det = bounding_boxes[:, 0:4] |
|
img_size = np.asarray(img.shape)[0:2] |
|
if nrof_faces > 1: |
|
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) |
|
img_center = img_size / 2 |
|
offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], |
|
(det[:, 1] + det[:, 3]) / 2 - img_center[0]]) |
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) |
|
index = np.argmax( |
|
bounding_box_size - offset_dist_squared * 2.0) |
|
det = det[index, :] |
|
det = np.squeeze(det) |
|
bb_temp = np.zeros(4, dtype=np.int32) |
|
|
|
|
|
bb_temp[0] = np.maximum(det[0], 0) |
|
bb_temp[1] = np.maximum(det[1], 0) |
|
bb_temp[2] = np.minimum(det[2], img_size[1]) |
|
bb_temp[3] = np.minimum(det[3], img_size[0]) |
|
|
|
cropped_temp = img[bb_temp[1]:bb_temp[3], bb_temp[0]:bb_temp[2], :] |
|
|
|
|
|
if cropped_temp.shape[0] > 0 and cropped_temp.shape[1] > 0: |
|
scaled_temp = np.array(Image.fromarray(cropped_temp).resize((image_size, image_size))) |
|
nrof_successfully_aligned += 1 |
|
imageio.imwrite(output_filename, scaled_temp) |
|
text_file.write('%s %d %d %d %d\n' % (output_filename, bb_temp[0], bb_temp[1], bb_temp[2], bb_temp[3])) |
|
else: |
|
print(f"Skipped resizing for image {image_path} due to invalid crop size") |
|
text_file.write('%s\n' % (output_filename)) |
|
else: |
|
print('Unable to align "%s"' % image_path) |
|
text_file.write('%s\n' % (output_filename)) |
|
|
|
return (nrof_images_total, nrof_successfully_aligned) |
|
|