from __future__ import absolute_import from __future__ import division from __future__ import print_function from scipy import misc import os import tensorflow.compat.v1 as tf import numpy as np import facenet import detect_face import imageio from PIL import Image class preprocesses: def __init__(self, input_datadir, output_datadir): self.input_datadir = input_datadir self.output_datadir = output_datadir def collect_data(self): output_dir = os.path.expanduser(self.output_datadir) if not os.path.exists(output_dir): os.makedirs(output_dir) dataset = facenet.get_dataset(self.input_datadir) with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, './npy') minsize = 20 # minimum size of face threshold = [0.5, 0.6, 0.6] # three steps's threshold factor = 0.709 # scale factor margin = 44 image_size = 182 random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print("Image: %s" % image_path) if not os.path.exists(output_filename): try: img = imageio.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) print('to_rgb data dimension: ', img.ndim) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('No of Detected Face: %d' % nrof_faces) if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det = det[index, :] det = np.squeeze(det) bb_temp = np.zeros(4, dtype=np.int32) # Ensure bounding box is within image boundaries bb_temp[0] = np.maximum(det[0], 0) bb_temp[1] = np.maximum(det[1], 0) bb_temp[2] = np.minimum(det[2], img_size[1]) bb_temp[3] = np.minimum(det[3], img_size[0]) cropped_temp = img[bb_temp[1]:bb_temp[3], bb_temp[0]:bb_temp[2], :] # Check if the cropped region has a valid size before resizing if cropped_temp.shape[0] > 0 and cropped_temp.shape[1] > 0: scaled_temp = np.array(Image.fromarray(cropped_temp).resize((image_size, image_size))) nrof_successfully_aligned += 1 imageio.imwrite(output_filename, scaled_temp) text_file.write('%s %d %d %d %d\n' % (output_filename, bb_temp[0], bb_temp[1], bb_temp[2], bb_temp[3])) else: print(f"Skipped resizing for image {image_path} due to invalid crop size") text_file.write('%s\n' % (output_filename)) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) return (nrof_images_total, nrof_successfully_aligned)