from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import facenet import os import math import pickle from sklearn.svm import SVC import sys import tensorflow.compat.v1 as tf class training: def __init__(self, datadir, modeldir,classifier_filename): self.datadir = datadir self.modeldir = modeldir self.classifier_filename = classifier_filename def main_train(self): with tf.Graph().as_default(): with tf.Session() as sess: img_data = facenet.get_dataset(self.datadir) path, label = facenet.get_image_paths_and_labels(img_data) print('Classes: %d' % len(img_data)) print('Images: %d' % len(path)) facenet.load_model(self.modeldir) images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] print('Extracting features of images for model') batch_size = 256 image_size = 160 #160 nrof_images = len(path) nrof_batches_per_epoch = int(math.ceil(1.0 * nrof_images / batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in range(nrof_batches_per_epoch): start_index = i * batch_size end_index = min((i + 1) * batch_size, nrof_images) paths_batch = path[start_index:end_index] images = facenet.load_data(paths_batch, False, False, image_size) feed_dict = {images_placeholder: images, phase_train_placeholder: False} emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict) classifier_file_name = os.path.expanduser(self.classifier_filename) # Training Started print('Training Started') model = SVC(kernel='linear', probability=True) model.fit(emb_array, label) class_names = [cls.name.replace('_', ' ') for cls in img_data] # Saving model with open(classifier_file_name, 'wb') as outfile: pickle.dump((model, class_names), outfile) return classifier_file_name