davanstrien HF staff commited on
Commit
f23d3fc
1 Parent(s): c2ee4f4
Files changed (2) hide show
  1. README.md +49 -0
  2. amazonian_fish_classifier.py +113 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: image
5
+ dtype: image
6
+ - name: label
7
+ dtype:
8
+ class_label:
9
+ names:
10
+ '0': Ancistrus
11
+ '1': Apistogramma
12
+ '2': Astyanax
13
+ '3': Bario
14
+ '4': Bryconops
15
+ '5': Bujurquina
16
+ '6': Bunocephalus
17
+ '7': Characidium
18
+ '8': Charax
19
+ '9': Copella
20
+ '10': Corydoras
21
+ '11': Creagrutus
22
+ '12': Curimata
23
+ '13': Doras
24
+ '14': Erythrinus
25
+ '15': Gasteropelecus
26
+ '16': Gymnotus
27
+ '17': Hemigrammus
28
+ '18': Hyphessobrycon
29
+ '19': Knodus
30
+ '20': Moenkhausia
31
+ '21': Otocinclus
32
+ '22': Oxyropsis
33
+ '23': Phenacogaster
34
+ '24': Pimelodella
35
+ '25': Prochilodus
36
+ '26': Pygocentrus
37
+ '27': Pyrrhulina
38
+ '28': Rineloricaria
39
+ '29': Sorubim
40
+ '30': Tatia
41
+ '31': Tetragonopterus
42
+ '32': Tyttocharax
43
+ splits:
44
+ - name: train
45
+ num_bytes: 578234
46
+ num_examples: 3068
47
+ download_size: 330399200
48
+ dataset_size: 578234
49
+ ---
amazonian_fish_classifier.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """TODO."""
15
+
16
+
17
+ import os
18
+ from pathlib import Path
19
+ import pandas as pd
20
+ import datasets
21
+
22
+ _CITATION = """TODO"""
23
+
24
+
25
+ _DESCRIPTION = """\
26
+ TODO
27
+ """
28
+
29
+ _HOMEPAGE = "https://doi.org/10.25573/data.17314730.v1"
30
+
31
+ _LICENSE = "CC BY 4.0"
32
+
33
+
34
+ _URLS = {
35
+ "images": "https://smithsonian.figshare.com/ndownloader/files/31975544",
36
+ }
37
+
38
+
39
+ class AmazonianFish(datasets.GeneratorBasedBuilder):
40
+ """TODO"""
41
+
42
+ VERSION = datasets.Version("1.1.0")
43
+
44
+ def _info(self):
45
+ features = datasets.Features(
46
+ {
47
+ "image": datasets.Image(),
48
+ "label": datasets.ClassLabel(
49
+ names=[
50
+ "Ancistrus",
51
+ "Apistogramma",
52
+ "Astyanax",
53
+ "Bario",
54
+ "Bryconops",
55
+ "Bujurquina",
56
+ "Bunocephalus",
57
+ "Characidium",
58
+ "Charax",
59
+ "Copella",
60
+ "Corydoras",
61
+ "Creagrutus",
62
+ "Curimata",
63
+ "Doras",
64
+ "Erythrinus",
65
+ "Gasteropelecus",
66
+ "Gymnotus",
67
+ "Hemigrammus",
68
+ "Hyphessobrycon",
69
+ "Knodus",
70
+ "Moenkhausia",
71
+ "Otocinclus",
72
+ "Oxyropsis",
73
+ "Phenacogaster",
74
+ "Pimelodella",
75
+ "Prochilodus",
76
+ "Pygocentrus",
77
+ "Pyrrhulina",
78
+ "Rineloricaria",
79
+ "Sorubim",
80
+ "Tatia",
81
+ "Tetragonopterus",
82
+ "Tyttocharax",
83
+ ]
84
+ ),
85
+ }
86
+ )
87
+
88
+ return datasets.DatasetInfo(
89
+ description=_DESCRIPTION,
90
+ features=features,
91
+ homepage=_HOMEPAGE,
92
+ license=_LICENSE,
93
+ citation=_CITATION,
94
+ )
95
+
96
+ def _split_generators(self, dl_manager):
97
+ images = dl_manager.download_and_extract(_URLS["images"])
98
+ return [
99
+ datasets.SplitGenerator(
100
+ name=datasets.Split.TRAIN,
101
+ gen_kwargs={
102
+ "images": os.path.join(images,"training_images"),
103
+ },
104
+ ),
105
+ ]
106
+
107
+ def _generate_examples(self, images):
108
+ id_ = 0
109
+ for example in Path(images).rglob("*.jpg"):
110
+ if example.name.startswith("._"):
111
+ continue
112
+ id_ += 1
113
+ yield id_, {"image": str(example), "label": example.parent.name}