Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
abstractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""NarrativeQA Reading Comprehension Challenge""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import os | |
import datasets | |
_CITATION = """\ | |
@article{narrativeqa, | |
author = {Tom\\'a\\v s Ko\\v cisk\\'y and Jonathan Schwarz and Phil Blunsom and | |
Chris Dyer and Karl Moritz Hermann and G\\'abor Melis and | |
Edward Grefenstette}, | |
title = {The {NarrativeQA} Reading Comprehension Challenge}, | |
journal = {Transactions of the Association for Computational Linguistics}, | |
url = {https://TBD}, | |
volume = {TBD}, | |
year = {2018}, | |
pages = {TBD}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
The NarrativeQA dataset for question answering on long documents (movie scripts, books). It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers. | |
""" | |
_URLS = { | |
"full_text": "https://storage.googleapis.com/huggingface-nlp/datasets/narrative_qa/narrativeqa_full_text.zip", | |
"repo": "https://github.com/deepmind/narrativeqa/archive/master.zip", | |
} | |
class NarrativeQa(datasets.GeneratorBasedBuilder): | |
"""NarrativeQA: Question answering on long-documents""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
features=datasets.Features( | |
{ | |
"document": { | |
"id": datasets.Value("string"), | |
"kind": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"file_size": datasets.Value("int32"), | |
"word_count": datasets.Value("int32"), | |
"start": datasets.Value("string"), | |
"end": datasets.Value("string"), | |
"summary": { | |
"text": datasets.Value("string"), | |
"tokens": datasets.features.Sequence(datasets.Value("string")), | |
"url": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
}, | |
"text": datasets.Value("string"), | |
}, | |
"question": { | |
"text": datasets.Value("string"), | |
"tokens": datasets.features.Sequence(datasets.Value("string")), | |
}, | |
"answers": [ | |
{ | |
"text": datasets.Value("string"), | |
"tokens": datasets.features.Sequence(datasets.Value("string")), | |
} | |
], | |
} | |
), | |
homepage="https://github.com/deepmind/narrativeqa", | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLS) | |
dl_dir["repo"] = os.path.join(dl_dir["repo"], "narrativeqa-master") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "valid"}, | |
), | |
] | |
def _generate_examples(self, repo_dir, full_text_dir, split): | |
"""Yields examples.""" | |
documents = {} | |
with open(os.path.join(repo_dir, "documents.csv"), encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
if row["set"] != split: | |
continue | |
documents[row["document_id"]] = row | |
summaries = {} | |
with open(os.path.join(repo_dir, "third_party", "wikipedia", "summaries.csv"), encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
if row["set"] != split: | |
continue | |
summaries[row["document_id"]] = row | |
with open(os.path.join(repo_dir, "qaps.csv"), encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for id_, row in enumerate(reader): | |
if row["set"] != split: | |
continue | |
document_id = row["document_id"] | |
document = documents[document_id] | |
summary = summaries[document_id] | |
full_text = open(os.path.join(full_text_dir, document_id + ".content"), encoding="latin-1").read() | |
res = { | |
"document": { | |
"id": document["document_id"], | |
"kind": document["kind"], | |
"url": document["story_url"], | |
"file_size": document["story_file_size"], | |
"word_count": document["story_word_count"], | |
"start": document["story_start"], | |
"end": document["story_end"], | |
"summary": { | |
"text": summary["summary"], | |
"tokens": summary["summary_tokenized"].split(), | |
"url": document["wiki_url"], | |
"title": document["wiki_title"], | |
}, | |
"text": full_text, | |
}, | |
"question": {"text": row["question"], "tokens": row["question_tokenized"].split()}, | |
"answers": [ | |
{"text": row["answer1"], "tokens": row["answer1_tokenized"].split()}, | |
{"text": row["answer2"], "tokens": row["answer2_tokenized"].split()}, | |
], | |
} | |
yield id_, res | |