Datasets:

Languages:
English
ArXiv:
License:
File size: 18,196 Bytes
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0645b0e
 
 
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0645b0e
e7dd1ad
 
 
 
 
0645b0e
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19f49
e7dd1ad
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2020 Facebook, Inc. and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""ELI5: Long Form Question Answering dataset"""

import bz2
import io
import json
import lzma
import os
import re
from os.path import isfile
from os.path import join as pjoin
from time import time

import datasets


logger = datasets.logging.get_logger(__name__)


_SUB_REDDITS = ["explainlikeimfive", "askscience", "AskHistorians"]
_REDDIT_URL = "https://files.pushshift.io/reddit/"

# pylint: disable=line-too-long
_URL_REGEX = r"""(?i)\b((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’])|(?:(?<!@)[a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)\b/?(?!@)))"""
# pylint: enable=line-too-long

_HTML_PAIRS = [
    ("&amp;", " & "),
    ("&quot", ' " '),
    ("&apos", " ' "),
    ("&gt;", " > "),
    ("&lt;", " < "),
]


# removes URLs (kept in separate list)
def _extract_urls_from_text(stp):
    url_list = list(set(re.findall(_URL_REGEX, stp)))
    for i, url in enumerate(url_list):
        stp = stp.replace(url, "_URL_%d_" % (i,))
    for a, b in _HTML_PAIRS:
        stp = stp.replace(a, b)
    return (stp, url_list)


# collects URLs for monthly dumps, has to be robust to file type changes
def _gather_dump_urls(base_url, mode, dl_manager):
    from bs4 import BeautifulSoup

    page_path = dl_manager.download(_REDDIT_URL + mode)
    page_f = open(page_path, encoding="utf-8")
    page_content = page_f.read()
    page_f.close()
    soup = BeautifulSoup(page_content, "lxml")
    files = [it for it in soup.find_all(attrs={"class": "file"})]
    f_urls = [
        tg.find_all(lambda x: x.has_attr("href"))[0]["href"]
        for tg in files
        if len(tg.find_all(lambda x: x.has_attr("href"))) > 0
    ]
    date_to_url = {}
    for url_st in f_urls:
        ls = re.findall(r"20[0-9]{2}-[0-9]{2}", url_st)
        if len(ls) > 0:
            yr, mt = ls[0].split("-")
            date_to_url[(int(yr), int(mt))] = base_url + mode + url_st[1:]
    return date_to_url


# select valid top-level comments
def _valid_line(dct, mode):
    top_level = (mode == "submissions") or (
        len(dct["body"].split()) > 2
        and not dct["body"].startswith("Your submission has been removed")
        and dct["author"] != "AutoModerator"
        and dct["parent_id"] == dct["link_id"]
    )
    res = dct.get("num_comments", 1) > 0 and dct.get("score", 0) and dct.get("score", 0) >= 2 and top_level
    return res


def _open_compressed_file(f_name, f_type):
    import zstandard as zstd

    fh = None
    if f_type == "xz":
        f = lzma.open(f_name, "rt")
    elif f_type == "bz2":
        f = bz2.open(f_name, "rt")
    elif f_type == "zst":
        fh = open(f_name, "rb")
        dctx = zstd.ZstdDecompressor()
        stream_reader = dctx.stream_reader(fh)
        f = io.TextIOWrapper(stream_reader, encoding="utf-8")
    else:
        raise NotImplementedError
    return f, fh


# download a file, extract posts from desired subreddit, then remove from disk
def _download_and_select_lines(dl_manager, f_url, mode, st_time):
    # download and pre-process original posts
    logger.info(f"downloading {f_url} {time() - st_time:.2f}")
    f_downloaded_path = dl_manager.download(f_url)
    logger.info(f"decompressing and filtering {f_url} {time() - st_time:.2f}")
    f, fh = _open_compressed_file(f_downloaded_path, f_url.split(".")[-1])
    lines = dict([(name, []) for name in _SUB_REDDITS])
    for line in f:
        line_dct = json.loads(line)
        if any([line_dct.get("subreddit", "") == name for name in _SUB_REDDITS]):
            lines[line_dct["subreddit"]] += [line_dct]
    f.close()
    if f_url.split(".")[-1] == "zst":
        fh.close()
    os.remove(f_downloaded_path)
    os.remove(f_downloaded_path + ".json")
    os.remove(f_downloaded_path + ".lock")
    logger.info("tokenizing and selecting {f_url} {time() - st_time:.2f}")
    processed_items = dict([(name, []) for name in _SUB_REDDITS])
    if mode == "submissions":
        key_list = ["id", "score", "url", "title", "selftext", "subreddit"]
    else:
        key_list = ["id", "link_id", "parent_id", "score", "body"]
    for name in _SUB_REDDITS:
        for line in lines[name]:
            if _valid_line(line, mode):
                reddit_res = {}
                for k in key_list:
                    if k in ["title", "selftext", "body"]:
                        reddit_res[k] = _extract_urls_from_text(line[k])
                    else:
                        reddit_res[k] = line[k]
                processed_items[name] += [reddit_res]
    logger.info(f"Total found {sum([len(ls) for ls in processed_items.values()])} {mode} {time() - st_time:.2f}")
    return processed_items


# post-process ELI5 questions and de-duplicate answers
def _post_process(reddit_dct, name=""):
    # remove the ELI5 at the start of explainlikeimfive questions
    start_re = re.compile(r"""\A[\[|\(]?[ ]?eli[5f][ ]?[\]|\)]?[]?[:,]?""", re.IGNORECASE)
    if name == "explainlikeimfive":
        title, uls = reddit_dct["title"]
        title = start_re.sub("", title.strip()).strip()
        reddit_dct["title"] = [title, uls]
    # dedupe and filter comments
    comments = [
        c
        for i, c in enumerate(reddit_dct["comments"])
        if len(c["body"][0].split()) >= 8 and c["id"] not in [x["id"] for x in reddit_dct["comments"][:i]]
    ]
    comments = sorted(comments, key=lambda c: (c["score"], len(c["body"][0].split()), c["id"]), reverse=True)
    reddit_dct["comments"] = comments
    return reddit_dct


def _download_and_filter_reddit(dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7):
    # collect submissions and comments monthly URLs
    date_to_url_submissions = _gather_dump_urls(_REDDIT_URL, "submissions", dl_manager)
    date_to_url_comments = _gather_dump_urls(_REDDIT_URL, "comments", dl_manager)
    # download, filter, process, remove
    st_time = time()
    qa_dict = dict([(name, {}) for name in _SUB_REDDITS])
    # first download all questions
    for year in range(start_year, end_year + 1):
        start_mth = start_month if year == start_year else 1
        end_mth = end_month if year == end_year else 12
        months = range(start_mth, end_mth + 1)
        for month in months:
            if (year, month) in date_to_url_submissions:
                f_url = date_to_url_submissions[(year, month)]
                processed_submissions = _download_and_select_lines(dl_manager, f_url, "submissions", st_time)
                for name in _SUB_REDDITS:
                    for dct in processed_submissions[name]:
                        qa_dict[name][dct["id"]] = dct
            else:
                logger.info(f"Could not find submissions dump file for year {year:4d} month {month:2d}")
    # then all answers
    for year in range(start_year, end_year + 1):
        start_mth = start_month if year == start_year else 1
        end_mth = end_month if year == end_year else 12
        months = range(start_mth, end_mth + 1)
        for month in months:
            if (year, month) in date_to_url_comments:
                f_url = date_to_url_comments[(year, month)]
                processed_comments = _download_and_select_lines(dl_manager, f_url, "comments", st_time)
                # merge submissions and comments
                for name in _SUB_REDDITS:
                    merged_comments = 0
                    for dct in processed_comments[name]:
                        did = dct["parent_id"].split("_")[-1]
                        if did in qa_dict[name]:
                            merged_comments += 1
                            qa_dict[name][did]["comments"] = qa_dict[name][did].get("comments", []) + [dct]
            else:
                logger.info(f"Could not find comments dump file for year {year:4d} month {month:2d}")
    # then post-process
    res = {}
    for name in _SUB_REDDITS:
        qa_dct_list = [(k, _post_process(rdct, name)) for k, rdct in qa_dict[name].items() if "comments" in rdct]
        qa_dct_list = [x for x in qa_dct_list if len(x[1]["comments"]) > 0 and name in x[1]["url"]]
        res[name] = dict(qa_dct_list[:])
    return res


_DESCRIPTION = """\
Explain Like I'm 5 long form QA dataset
"""

_CITATION = """\
@inproceedings{DBLP:conf/acl/FanJPGWA19,
  author    = {Angela Fan and
               Yacine Jernite and
               Ethan Perez and
               David Grangier and
               Jason Weston and
               Michael Auli},
  editor    = {Anna Korhonen and
               David R. Traum and
               Lluis Marquez},
  title     = {{ELI5:} Long Form Question Answering},
  booktitle = {Proceedings of the 57th Conference of the Association for Computational
               Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019,
               Volume 1: Long Papers},
  pages     = {3558--3567},
  publisher = {Association for Computational Linguistics},
  year      = {2019},
  url       = {https://doi.org/10.18653/v1/p19-1346},
  doi       = {10.18653/v1/p19-1346},
}
"""


class Eli5Config(datasets.BuilderConfig):
    """BuilderConfig for ExplainLikeImFive."""

    def __init__(self, **kwargs):
        """BuilderConfig for ExplainLikeImFive.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Eli5Config, self).__init__(**kwargs)


class Eli5(datasets.GeneratorBasedBuilder):
    """ELI5: Explain Like I'm Five long form question answering dataset."""

    BUILDER_CONFIG_CLASS = Eli5Config
    _DATA_SPLIT_URL = "https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/eli5/reddit_data_split.json"

    BUILDER_CONFIGS = [
        Eli5Config(name="LFQA_reddit", version=datasets.Version("1.0.0"), description="long from QA subreddits"),
    ]

    test_dummy_data = False

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "q_id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "selftext": datasets.Value("string"),
                    "document": datasets.Value("string"),
                    "subreddit": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "a_id": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "score": datasets.Value("int32"),
                        }
                    ),
                    "title_urls": datasets.features.Sequence(datasets.Value("string")),
                    "selftext_urls": datasets.features.Sequence(datasets.Value("string")),
                    "answers_urls": datasets.features.Sequence(datasets.Value("string")),
                }
            ),
            supervised_keys=None,
            homepage="https://facebookresearch.github.io/ELI5/explore.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        qa_data_file = pjoin(
            self._cache_dir_root, self._relative_data_dir(with_version=False), "reddit_downloaded_qa_lists.json"
        )
        if isfile(qa_data_file):
            logger.info("loading pre-computed QA list")
            self.filtered_reddit = json.load(open(qa_data_file))
        else:
            self.filtered_reddit = _download_and_filter_reddit(
                dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7
            )
            logger.info("saving pre-computed QA list")
            json.dump(self.filtered_reddit, open(qa_data_file, "w"))
        # download data splits from AWS
        fpath_splits = dl_manager.download(self._DATA_SPLIT_URL)
        self.data_split = json.load(open(fpath_splits))
        return [
            datasets.SplitGenerator(
                name=datasets.Split("train_eli5"),
                gen_kwargs={"split": "train", "subreddit_name": "explainlikeimfive"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("validation_eli5"),
                gen_kwargs={"split": "validation", "subreddit_name": "explainlikeimfive"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_eli5"),
                gen_kwargs={"split": "test", "subreddit_name": "explainlikeimfive"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("train_asks"),
                gen_kwargs={"split": "train", "subreddit_name": "askscience"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("validation_asks"),
                gen_kwargs={"split": "validation", "subreddit_name": "askscience"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_asks"),
                gen_kwargs={"split": "test", "subreddit_name": "askscience"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("train_askh"),
                gen_kwargs={"split": "train", "subreddit_name": "AskHistorians"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("validation_askh"),
                gen_kwargs={"split": "validation", "subreddit_name": "AskHistorians"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_askh"),
                gen_kwargs={"split": "test", "subreddit_name": "AskHistorians"},
            ),
        ]

    def _generate_examples(self, split, subreddit_name):
        logger.info(f"generating examples from = {subreddit_name}, {split} set")
        if split in self.data_split.get(subreddit_name, []):
            id_list = self.data_split[subreddit_name][split]
            data = [
                self.filtered_reddit[subreddit_name][q_id]
                for q_id in id_list
                if q_id in self.filtered_reddit[subreddit_name]
            ]
        elif split == "train":
            data = [
                self.filtered_reddit[subreddit_name][q_id]
                for subreddit_name in self.filtered_reddit
                for q_id in self.filtered_reddit[subreddit_name]
            ]
        else:
            data = []
        for example in data:
            id_ = example["id"]
            title = example["title"][0]
            title_urls = example["title"][1]
            selftext = example["selftext"][0]
            selftext_urls = example["selftext"][1]
            answer_scores = [ans["score"] for ans in example["comments"]]
            answer_ids = [ans["id"] for ans in example["comments"]]
            # flatten list of URL mappings
            url_maps = [(ul, i, j) for i, ans in enumerate(example["comments"]) for j, ul in enumerate(ans["body"][1])]
            answers_urls = [ul for ul, _, _ in url_maps]
            map_url_indices = dict([((i, j), k) for k, (_, i, j) in enumerate(url_maps)])
            answer_texts = []
            for i, ans in enumerate(example["comments"]):
                txt = ans["body"][0]
                for j, _ in enumerate(ans["body"][1]):
                    txt = txt.replace(f"_URL_{j}_", f"_URL_{map_url_indices[(i, j)]}_")
                answer_texts += [txt.strip()]
            yield id_, {
                "q_id": id_,
                "title": title,
                "selftext": selftext,
                "document": "",
                "subreddit": example.get("subreddit", subreddit_name),
                "answers": {"a_id": answer_ids, "text": answer_texts, "score": answer_scores},
                "title_urls": title_urls,
                "selftext_urls": selftext_urls,
                "answers_urls": answers_urls,
            }