AmericanStories / AmericanStories.py
lhoestq's picture
lhoestq HF staff
Update AmericanStories.py
2752e54
raw
history blame
8.63 kB
import json
from datasets import DatasetInfo, DatasetBuilder, DownloadManager, BuilderConfig, SplitGenerator, Split, Version
import datasets
SUPPORTED_YEARS = ["1774"]
# Add years from 1798 to 1964 to the supported years
SUPPORTED_YEARS = SUPPORTED_YEARS + [str(year) for year in range(1798, 1964)]
def make_year_file_splits():
"""
Collects a list of available files for each year.
Returns:
dict: A dictionary mapping each year to its corresponding file URL.
list: A list of years.
"""
# Make a list of years from 1774 to 1960
year_list = [str(year) for year in range(1774, 1960)]
data_files = [f"faro_{year}.tar.gz" for year in year_list]
splits = {year: file for year, file in zip(year_list, data_files)}
years = year_list
return splits, years
_CITATION = """\
Coming Soon
"""
_DESCRIPTION = """\
American Stories offers high-quality structured data from historical newspapers suitable for pre-training large language models to enhance the understanding of historical English and world knowledge. It can also be integrated into external databases of retrieval-augmented language models, enabling broader access to historical information, including interpretations of political events and intricate details about people's ancestors. Additionally, the structured article texts facilitate the application of transformer-based methods for popular tasks like detecting reproduced content, significantly improving accuracy compared to traditional OCR methods. American Stories serves as a substantial and valuable dataset for advancing multimodal layout analysis models and other multimodal applications.
"""
_FILE_DICT, _YEARS = make_year_file_splits()
class CustomBuilderConfig(datasets.BuilderConfig):
"""BuilderConfig for AmericanStories dataset with different configurations."""
def __init__(self, year_list=None, **kwargs):
"""
BuilderConfig for AmericanStories dataset.
Args:
year_list (list): A list of years to include in the dataset.
**kwargs: Additional keyword arguments forwarded to the superclass.
"""
super(CustomBuilderConfig, self).__init__(**kwargs)
self.year_list = year_list
class AmericanStories(datasets.GeneratorBasedBuilder):
"""Dataset builder class for AmericanStories dataset."""
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
CustomBuilderConfig(
name="all_years",
version=VERSION,
description="All years in the dataset"
),
CustomBuilderConfig(
name="subset_years",
version=VERSION,
description="Subset of years in the dataset",
year_list=["1774", "1804"]
),
CustomBuilderConfig(
name="all_years_content_regions",
version=VERSION,
description="All years in the dataset",
),
CustomBuilderConfig(
name="subset_years_content_regions",
version=VERSION,
description="Subset of years in the dataset",
year_list=["1774", "1804"],
)
]
DEFAULT_CONFIG_NAME = "subset_years"
BUILDER_CONFIG_CLASS = CustomBuilderConfig
def _info(self):
"""
Specifies the DatasetInfo object for the AmericanStories dataset.
Returns:
datasets.DatasetInfo: The DatasetInfo object.
"""
if not self.config.name.endswith("content_regions"):
features = datasets.Features(
{
"article_id": datasets.Value("string"),
"newspaper_name": datasets.Value("string"),
"edition": datasets.Value("string"),
"date": datasets.Value("string"),
"page": datasets.Value("string"),
"headline": datasets.Value("string"),
"byline": datasets.Value("string"),
"article": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"raw_data_string": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
Downloads and extracts the data, and defines the dataset splits.
Args:
dl_manager (datasets.DownloadManager): The DownloadManager instance.
Returns:
list: A list of SplitGenerator objects.
"""
if self.config.name == "subset_years":
print("Only taking a subset of years. Change name to 'all_years' to use all years in the dataset.")
if not self.config.year_list:
raise ValueError("Please provide a valid year_list")
elif not set(self.config.year_list).issubset(set(SUPPORTED_YEARS)):
raise ValueError(f"Only {SUPPORTED_YEARS} are supported. Please provide a valid year_list")
urls = _FILE_DICT
year_list = _YEARS
# Subset _FILE_DICT and year_list to only include years in config.year_list
if self.config.year_list:
urls = {year: urls[year] for year in self.config.year_list}
year_list = self.config.year_list
archive = dl_manager.download(urls)
# Return a list of splits, where each split corresponds to a year
return [
datasets.SplitGenerator(
name=year,
gen_kwargs={
"files": dl_manager.iter_archive(archive[year]),
"year_dir": "/".join(["mnt", "122a7683-fa4b-45dd-9f13-b18cc4f4a187", "ca_rule_based_fa_clean", "faro_" + year]),
"split": year,
"associated": True if not self.config.name.endswith("content_regions") else False,
},
) for year in year_list
]
def _generate_examples(self, files, year_dir, split, associated):
"""
Generates examples for the specified year and split.
Args:
year_dir (str): The directory path for the year.
associated (bool): Whether or not the output should be contents associated into an "article" or raw contents.
Yields:
tuple: The key-value pair containing the example ID and the example data.
"""
if associated:
for filepath, f in files:
if filepath.startswith(year_dir):
try :
data = json.loads(f.read().encode("utf-8"))
except:
print("Error loading file: " + filepath)
continue
if "lccn" in data.keys():
scan_id = filepath.split('.')[0]
scan_date = filepath.split("_")[0]
scan_page = filepath.split("_")[1]
scan_edition = filepath.split("_")[-2][8:]
newspaper_name = data["lccn"]["title"]
full_articles_in_data = data["full articles"]
for article in full_articles_in_data:
article_id = str(article["full_article_id"]) + "_" + scan_id
yield article_id, {
"article_id": article_id,
"newspaper_name": newspaper_name,
"edition": scan_edition,
"date": scan_date,
"page": scan_page,
"headline": article["headline"],
"byline": article["byline"],
"article": article["article"],
}
else:
for filepath, f in files:
if filepath.startswith(year_dir):
try :
data = json.loads(f.read().encode("utf-8"))
except:
# print("Error loading file: " + filepath)
continue
###Convert json to strng
data=json.dumps(data)
scan_id=filepath.split('.')[0]
##Yield the scan id and the raw data string
yield scan_id, {
"raw_data_string": str(data)
}