denemel commited on
Commit
79a0451
1 Parent(s): 4f1d422

Updated the dataset card.

Browse files
Files changed (2) hide show
  1. README.md +95 -32
  2. wino_x.py +1 -1
README.md CHANGED
@@ -31,15 +31,14 @@ task_ids:
31
  # Dataset Card for Wino-X
32
 
33
  ## Table of Contents
34
- - [Table of Contents](#table-of-contents)
35
  - [Dataset Description](#dataset-description)
36
  - [Dataset Summary](#dataset-summary)
37
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
38
  - [Languages](#languages)
39
  - [Dataset Structure](#dataset-structure)
40
  - [Data Instances](#data-instances)
41
- - [Data Fields](#data-fields)
42
- - [Data Splits](#data-splits)
43
  - [Dataset Creation](#dataset-creation)
44
  - [Curation Rationale](#curation-rationale)
45
  - [Source Data](#source-data)
@@ -53,100 +52,164 @@ task_ids:
53
  - [Dataset Curators](#dataset-curators)
54
  - [Licensing Information](#licensing-information)
55
  - [Citation Information](#citation-information)
56
- - [Contributions](#contributions)
57
 
58
  ## Dataset Description
59
 
60
- - **Homepage:**
61
- - **Repository:**
62
- - **Paper:**
63
- - **Leaderboard:**
64
- - **Point of Contact:**
65
 
66
  ### Dataset Summary
67
 
68
- [More Information Needed]
 
 
 
69
 
70
  ### Supported Tasks and Leaderboards
71
 
72
- [More Information Needed]
 
 
73
 
74
  ### Languages
75
 
76
- [More Information Needed]
77
 
78
  ## Dataset Structure
79
 
80
  ### Data Instances
81
 
82
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  ### Data Fields
85
 
86
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  ### Data Splits
89
 
90
- [More Information Needed]
 
91
 
92
  ## Dataset Creation
93
 
94
  ### Curation Rationale
95
 
96
- [More Information Needed]
97
 
98
  ### Source Data
99
 
100
  #### Initial Data Collection and Normalization
101
 
102
- [More Information Needed]
103
 
104
  #### Who are the source language producers?
105
 
106
- [More Information Needed]
107
 
108
  ### Annotations
109
 
110
  #### Annotation process
111
 
112
- [More Information Needed]
113
 
114
  #### Who are the annotators?
115
 
116
- [More Information Needed]
117
 
118
  ### Personal and Sensitive Information
119
 
120
- [More Information Needed]
121
 
122
  ## Considerations for Using the Data
123
 
124
  ### Social Impact of Dataset
125
 
126
- [More Information Needed]
127
 
128
  ### Discussion of Biases
129
 
130
- [More Information Needed]
131
 
132
  ### Other Known Limitations
133
 
134
- [More Information Needed]
135
 
136
  ## Additional Information
137
 
138
  ### Dataset Curators
139
 
140
- [More Information Needed]
141
 
142
  ### Licensing Information
143
 
144
- [More Information Needed]
145
 
146
  ### Citation Information
147
 
148
- [More Information Needed]
149
-
150
- ### Contributions
151
-
152
- See the [associated GitHub repository](https://github.com/demelin/Wino-X).
 
 
31
  # Dataset Card for Wino-X
32
 
33
  ## Table of Contents
 
34
  - [Dataset Description](#dataset-description)
35
  - [Dataset Summary](#dataset-summary)
36
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
37
  - [Languages](#languages)
38
  - [Dataset Structure](#dataset-structure)
39
  - [Data Instances](#data-instances)
40
+ - [Data Fields](#data-instances)
41
+ - [Data Splits](#data-instances)
42
  - [Dataset Creation](#dataset-creation)
43
  - [Curation Rationale](#curation-rationale)
44
  - [Source Data](#source-data)
 
52
  - [Dataset Curators](#dataset-curators)
53
  - [Licensing Information](#licensing-information)
54
  - [Citation Information](#citation-information)
 
55
 
56
  ## Dataset Description
57
 
58
+ - **Homepage:** [Wino-X repository](https://github.com/demelin/Wino-X)
59
+ - **Repository:** [Wino-X repository](https://github.com/demelin/Wino-X)
60
+ - **Paper:** [Wino-X: Multilingual Winograd Schemas for Commonsense Reasoning and Coreference Resolution](https://aclanthology.org/2021.emnlp-main.670/)
61
+ - **Leaderboard:** [N/A]
62
+ - **Point of Contact:** [Denis Emelin](demelin.github.io)
63
 
64
  ### Dataset Summary
65
 
66
+ Wino-X is a parallel dataset of German, French, and Russian Winograd schemas, aligned with their English
67
+ counterparts, used to examine whether neural machine translation models can perform coreference resolution that
68
+ requires commonsense knowledge, and whether multilingual language models are capable of commonsense reasoning across
69
+ multiple languages.
70
 
71
  ### Supported Tasks and Leaderboards
72
 
73
+ - translation: The dataset can be used to evaluate translations of ambiguous source sentences, as produced by translation models . A [pretrained transformer-based NMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) can be used for this purpose.
74
+ - coreference-resolution: The dataset can be used to rank alternative translations of an ambiguous source sentence that differ in the chosen referent of an ambiguous source pronoun. A [pretrained transformer-based NMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) can be used for this purpose.
75
+ - commonsense-reasoning: The dataset can also be used evaluate whether pretrained multilingual language models can perform commonsense reasoning in (or across) multiple languages by identifying the correct filler in a cloze completion task. An [XLM-based model](https://huggingface.co/xlm-roberta-base) can be used for this purpose.
76
 
77
  ### Languages
78
 
79
+ The dataset (both its MT and LM portions) is available in the following translation pairs: English-German, English-French, English-Russian. All English sentences included in *Wino-X* were extracted from publicly available parallel corpora, as detailed in the accompanying paper, and represent the dataset-specific language varieties. All non-English sentences were obtained through machine translation and may, as such, exhibit features of translationese.
80
 
81
  ## Dataset Structure
82
 
83
  ### Data Instances
84
 
85
+ The following represents a typical *MT-Wino-X* instance (for the English-German translation pair):
86
+
87
+ {"qID": "3UDTAB6HH8D37OQL3O6F3GXEEOF09Z-1",
88
+ "sentence": "The woman looked for a different vase for the bouquet because it was too small.",
89
+ "translation1": "Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil sie zu klein war.",
90
+ "translation2": "Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil er zu klein war.",
91
+ "answer": 1,
92
+ "pronoun1": "sie",
93
+ "pronoun2": "er",
94
+ "referent1_en": "vase",
95
+ "referent2_en": "bouquet",
96
+ "true_translation_referent_of_pronoun1_de": "Vase",
97
+ "true_translation_referent_of_pronoun2_de": "Blumenstrauß",
98
+ "false_translation_referent_of_pronoun1_de": "Vase",
99
+ "false_translation_referent_of_pronoun2_de": "Blumenstrauß"}
100
+
101
+
102
+ The following represents a typical *LM-Wino-X* instance (for the English-French translation pair):
103
+
104
+ {"qID": "3UDTAB6HH8D37OQL3O6F3GXEEOF09Z-1",
105
+ "sentence": "The woman looked for a different vase for the bouquet because it was too small.",
106
+ "context_en": "The woman looked for a different vase for the bouquet because _ was too small.",
107
+ "context_fr": "La femme a cherché un vase différent pour le bouquet car _ était trop petit.",
108
+ "option1_en": "the bouquet",
109
+ "option2_en": "the vase",
110
+ "option1_fr": "le bouquet",
111
+ "option2_fr": "le vase",
112
+ "answer": 2,
113
+ "context_referent_of_option1_fr": "bouquet",
114
+ "context_referent_of_option2_fr": "vase"}
115
 
116
  ### Data Fields
117
 
118
+ For *MT-Wino-X*:
119
+
120
+ - "qID": Unique identifier ID for this dataset instance.
121
+ - "sentence": English sentence containing the ambiguous pronoun 'it'.
122
+ - "translation1": First translation candidate.
123
+ - "translation2": Second translation candidate.
124
+ - "answer": ID of the correct translation.
125
+ - "pronoun1": Translation of the ambiguous source pronoun in translation1.
126
+ - "pronoun2": Translation of the ambiguous source pronoun in translation2.
127
+ - "referent1_en": English referent of the translation of the ambiguous source pronoun in translation1.
128
+ - "referent2_en": English referent of the translation of the ambiguous source pronoun in translation2.
129
+ - "true_translation_referent_of_pronoun1_[TGT-LANG]": Target language referent of pronoun1 in the correct translation.
130
+ - "true_translation_referent_of_pronoun2_[TGT-LANG]": Target language referent of pronoun2 in the correct translation.
131
+ - "false_translation_referent_of_pronoun1_[TGT-LANG]": Target language referent of pronoun1 in the incorrect translation.
132
+ - "false_translation_referent_of_pronoun2_[TGT-LANG]": Target language referent of pronoun2 in the incorrect translation.
133
+
134
+
135
+ For *LM-Wino-X*:
136
+
137
+ - "qID": Unique identifier ID for this dataset instance.
138
+ - "sentence": English sentence containing the ambiguous pronoun 'it'.
139
+ - "context_en": Same English sentence, where 'it' is replaced by a gap.
140
+ - "context_fr": Target language translation of the English sentence, where the translation of 'it' is replaced by a gap.
141
+ - "option1_en": First filler option for the English sentence.
142
+ - "option2_en": Second filler option for the English sentence.
143
+ - "option1_[TGT-LANG]": First filler option for the target language sentence.
144
+ - "option2_[TGT-LANG]": Second filler option for the target language sentence.
145
+ - "answer": ID of the correct gap filler.
146
+ - "context_referent_of_option1_[TGT-LANG]": English translation of option1_[TGT-LANG].
147
+ - "context_referent_of_option2_[TGT-LANG]": English translation of option2_[TGT-LANG]
148
 
149
  ### Data Splits
150
 
151
+ *Wno-X* was designed as an evaluation-only benchmark and therefore is intended to be used for zero-shot testing only. However, users are very welcome to split the data as they wish :) .
152
+
153
 
154
  ## Dataset Creation
155
 
156
  ### Curation Rationale
157
 
158
+ Please refer to [Section 2 in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
159
 
160
  ### Source Data
161
 
162
  #### Initial Data Collection and Normalization
163
 
164
+ Please refer to [Section 2 in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
165
 
166
  #### Who are the source language producers?
167
 
168
+ Please refer to [Section 2 in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
169
 
170
  ### Annotations
171
 
172
  #### Annotation process
173
 
174
+ Please refer to [Section 2 in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
175
 
176
  #### Who are the annotators?
177
 
178
+ Annotations were generated automatically and verified by the dataset author / curator for correctness.
179
 
180
  ### Personal and Sensitive Information
181
 
182
+ [N/A]
183
 
184
  ## Considerations for Using the Data
185
 
186
  ### Social Impact of Dataset
187
 
188
+ Please refer to ['Ethical Considerations' in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
189
 
190
  ### Discussion of Biases
191
 
192
+ Please refer to ['Ethical Considerations' in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
193
 
194
  ### Other Known Limitations
195
 
196
+ Please refer to ['Ethical Considerations' in the dataset paper](https://aclanthology.org/2021.emnlp-main.670.pdf).
197
 
198
  ## Additional Information
199
 
200
  ### Dataset Curators
201
 
202
+ [Denis Emelin](demelin.github.io)
203
 
204
  ### Licensing Information
205
 
206
+ MIT
207
 
208
  ### Citation Information
209
 
210
+ @inproceedings{Emelin2021WinoXMW,
211
+ title={Wino-X: Multilingual Winograd Schemas for Commonsense Reasoning and Coreference Resolution},
212
+ author={Denis Emelin and Rico Sennrich},
213
+ booktitle={EMNLP},
214
+ year={2021}
215
+ }
wino_x.py CHANGED
@@ -13,7 +13,7 @@
13
  # limitations under the License.
14
  """ Wino-X is a parallel dataset of German, French, and Russian Winograd schemas, aligned with their English
15
  counterparts, used to examine whether neural machine translation models can perform coreference resolution that
16
- requires commonsense knowledge and whether multilingual language models are capable of commonsense reasoning across
17
  multiple languages. """
18
 
19
  import csv
 
13
  # limitations under the License.
14
  """ Wino-X is a parallel dataset of German, French, and Russian Winograd schemas, aligned with their English
15
  counterparts, used to examine whether neural machine translation models can perform coreference resolution that
16
+ requires commonsense knowledge, and whether multilingual language models are capable of commonsense reasoning across
17
  multiple languages. """
18
 
19
  import csv