File size: 5,938 Bytes
aba5a20
 
 
 
 
659c5f4
aba5a20
659c5f4
2323327
aba5a20
 
 
 
 
 
 
ad6af4d
aba5a20
 
ae31a6f
054eed9
5c0cdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aba5a20
 
 
 
 
 
 
ae31a6f
aba5a20
 
 
ae31a6f
 
aba5a20
 
 
 
 
 
 
 
 
 
 
 
 
31e469a
aba5a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e469a
 
 
5c0cdaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- de
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: null
pretty_name: SmartData
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-DATE
          2: I-DATE
          3: B-DISASTER_TYPE
          4: I-DISASTER_TYPE
          5: B-DISTANCE
          6: I-DISTANCE
          7: B-DURATION
          8: I-DURATION
          9: B-LOCATION
          10: I-LOCATION
          11: B-LOCATION_CITY
          12: I-LOCATION_CITY
          13: B-LOCATION_ROUTE
          14: I-LOCATION_ROUTE
          15: B-LOCATION_STOP
          16: I-LOCATION_STOP
          17: B-LOCATION_STREET
          18: I-LOCATION_STREET
          19: B-NUMBER
          20: I-NUMBER
          21: B-ORGANIZATION
          22: I-ORGANIZATION
          23: B-ORGANIZATION_COMPANY
          24: I-ORGANIZATION_COMPANY
          25: B-ORG_POSITION
          26: I-ORG_POSITION
          27: B-PERSON
          28: I-PERSON
          29: B-TIME
          30: I-TIME
          31: B-TRIGGER
          32: I-TRIGGER
  config_name: smartdata-v3_20200302
  splits:
  - name: test
    num_bytes: 266529
    num_examples: 230
  - name: train
    num_bytes: 2124312
    num_examples: 1861
  - name: validation
    num_bytes: 258681
    num_examples: 228
  download_size: 18880782
  dataset_size: 2649522
---

# Dataset Card for SmartData

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://www.dfki.de/web/forschung/projekte-publikationen/publikationen-uebersicht/publikation/9427/
- **Repository:** https://github.com/DFKI-NLP/smartdata-corpus
- **Paper:** https://www.dfki.de/fileadmin/user_upload/import/9427_lrec_smartdata_corpus.pdf
- **Leaderboard:**
- **Point of Contact:** 

### Dataset Summary

DFKI SmartData Corpus is a dataset of 2598 German-language documents
which has been annotated with fine-grained geo-entities, such as streets,
stops and routes, as well as standard named entity types. It has also
been annotated with a set of 15 traffic- and industry-related n-ary
relations and events, such as Accidents, Traffic jams, Acquisitions,
and Strikes. The corpus consists of newswire texts, Twitter messages,
and traffic reports from radio stations, police and railway companies.
It allows for training and evaluating both named entity recognition
algorithms that aim for fine-grained typing of geo-entities, as well
as n-ary relation extraction systems.

### Supported Tasks and Leaderboards

NER

### Languages

German

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

    - id: an identifier for the article the text came from
    - tokens: a list of string tokens for the text of the article
    - ner_tags: a corresponding list of NER tags in the BIO format

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

CC-BY 4.0

### Citation Information

```
@InProceedings{SCHIERSCH18.85,
  author = {Martin Schiersch and Veselina Mironova and Maximilian Schmitt and Philippe Thomas and Aleksandra Gabryszak and Leonhard Hennig},
  title = "{A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
```

### Contributions

Thanks to [@aseifert](https://github.com/aseifert) for adding this dataset.