mrovera commited on
Commit
43ee0c7
·
verified ·
1 Parent(s): a6faba0

Draft README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -3
README.md CHANGED
@@ -1,3 +1,138 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: it
3
+ license: cc-by-sa-4.0
4
+ multilinguality: monolingual
5
+ task_categories:
6
+ - token-classification
7
+
8
+ tags:
9
+ - Factuality Detection
10
+ - Modality Detection
11
+ ---
12
+ # ModaFact - Dataset
13
+
14
+ ## Dataset Description
15
+
16
+ ### Dataset Summary
17
+
18
+ ModaFact is a textual dataset annotated with Event Factuality and Modality in Italian. ModaFact’s goal is to model in a joint way factuality and modality values of event-denoting expressions in text.
19
+
20
+ ### Textual data source
21
+
22
+ Original texts (sentences) have been sampled from EventNet-ITA, a dataset for Frame Parsing, which was created using texts from Wikipedia.
23
+
24
+ ### Annotation
25
+
26
+ ModaFact has been originally annotated at token level, adopting the IOB2 style.
27
+ Whereas for Modality the schema is unique, for Factuality we provide two representations: a fine-grained representation (FG), which specifies values over three axes (CERTAINTY, POLARITY, TIME), and a coarse-grained representation (CG), which only provides the final factuality value.
28
+
29
+
30
+ Example of **coarse-grained representation (CG)**:
31
+ ```
32
+ Per O
33
+ chiarire B-POSSIBLE-POS-FUTURE-FINAL
34
+ la O
35
+ questione O
36
+ la O
37
+ Santa O
38
+ Sede O
39
+ autorizzò B-CERTAIN-POS-PRESENT/PAST
40
+ il O
41
+ prelievo B-UNDERSPECIFIED-POS-FUTURE-CONCESSIVE
42
+ di O
43
+ campioni O
44
+ del O
45
+ legno O
46
+ che O
47
+ vennero O
48
+ datati B-CERTAIN-POS-PRESENT/PAST
49
+ attraverso O
50
+ l' O
51
+ utilizzo B-CERTAIN-POS-PRESENT/PAST
52
+ del O
53
+ metodo O
54
+ del O
55
+ carbonio-14 O
56
+ . O
57
+ ```
58
+
59
+ Example of **fine-grained representation (CG)**:
60
+ ```
61
+ Per O
62
+ chiarire B-NON_FACTUAL-FINAL
63
+ la O
64
+ questione O
65
+ la O
66
+ Santa O
67
+ Sede O
68
+ autorizzò B-FACTUAL
69
+ il O
70
+ prelievo B-NON_FACTUAL-CONCESSIVE
71
+ di O
72
+ campioni O
73
+ del O
74
+ legno O
75
+ che O
76
+ vennero O
77
+ datati B-FACTUAL
78
+ attraverso O
79
+ l' O
80
+ utilizzo B-FACTUAL
81
+ del O
82
+ metodo O
83
+ del O
84
+ carbonio-14 O
85
+ . O
86
+ ```
87
+
88
+ #### Labelset
89
+
90
+ Factuality:
91
+
92
+ - Fine-grained
93
+ - CERTAINTY: {CERTAIN, PROBABLE, POSSIBLE, UNDERSPECIFIED}
94
+ - POLARITY: {POSITIVE, NEGATIVE, UNDERSPECIFIED}
95
+ - TIME: {PRESENT/PAST, FUTURE, UNDERSPECIFIED}
96
+
97
+ - Coarse-grained
98
+ - {FACTUAL, NON-FACTUAL, COUNTERFACTUAL, UNDERSPECIFIED}
99
+
100
+
101
+ Modality:
102
+ - {WILL, FINAL, CONCESSIVE, POSSIBILITY, CAPABILITY, DUTY, COERCION, EXHORTATIVE, COMMITMENT, DECISION}
103
+
104
+
105
+ ### Data format
106
+
107
+ According to the experimental set presented in the paper (see below, Citation Information) we provide different data formats:
108
+ - **token-level BIO sequence labelling**: the dataset is formatted as a two-column `tsv`. The first column contains the token, the second column contains all corresponding labels (factuality and modality), concatenated with `-`. This format makes the dataset ready-to-train with the MaChAmp [seq_bio](https://github.com/machamp-nlp/machamp/blob/master/docs/seq_bio.md) task type.
109
+ - **token-level multi-task sequence labelling**: the dataset is formatted as a three-column `tsv`. The first column contains the token, the second column contains all factuality labels, the third column contains the modality label. This format makes the dataset ready-to-train with the Machamp seq_bio **multitask** setting.
110
+ - **generative and sequence-to-sequence**: the dataset is formatted as a `jsonl` file, containing a list of dictionaries. Each dictionary has an *Input* field (the sentence) and an *Output* field, a string composed by *token=labels* pairs. This format makes the dataset ready-to train with sequence-to-sequence and causal/generative models.
111
+
112
+ ### Data Split
113
+
114
+ For the sake of reproducibility, we provide, for each configuration, the 5 folds used in the paper.
115
+ The data split follows a 60/20/20 ratio and has been created in a stratified way. This means each train/dev/test set contains (approx) the same relative distribution of classes.
116
+
117
+
118
+
119
+ ## Additional Information
120
+
121
+
122
+ ### Licensing Information
123
+
124
+ ModaFact is released under the CC-BY-SA-4.0 License.
125
+
126
+ ### Citation Information
127
+
128
+ If you use ModaFact, please cite the following paper:
129
+
130
+ ```
131
+ @inproceedings{rovera-et-al-2025-modafact,
132
+ title = "ModaFact: Multi-paradigm Evaluation for Joint Event Modality and Factuality Detection",
133
+ author = "Rovera, Marco and Cristoforetti, Serena and Tonelli, Sara",
134
+ booktitle = "COLING2025, tbp",
135
+ year = "2025",
136
+
137
+ }
138
+ ```