--- dataset_info: features: - name: audio dtype: audio - name: timestamps_start sequence: float64 - name: timestamps_end sequence: float64 - name: speakers sequence: string splits: - name: dev num_bytes: 2338411143 num_examples: 216 - name: test num_bytes: 5015872396 num_examples: 232 download_size: 7296384603 dataset_size: 7354283539 configs: - config_name: default data_files: - split: dev path: data/dev-* - split: test path: data/test-* tags: - speaker diarization - voice activity detection license: cc-by-4.0 language: - en --- # Dataset Card for the Voxconverse dataset VoxConverse is an audio-visual diarisation dataset consisting of multispeaker clips of human speech, extracted from YouTube videos. Updates and additional information about the dataset can be found on the [dataset website](https://www.robots.ox.ac.uk/~vgg/data/voxconverse/index.html). Note: This dataset has been preprocessed using [diarizers](https://github.com/huggingface/diarizers/tree/main/datasets). It makes the dataset compatible with diarizers to fine-tune [pyannote](https://huggingface.co/pyannote/segmentation-3.0) segmentation models. # Example Usage ``` from datasets import load_dataset ds = load_dataset("diarizers-community/voxconverse") print(ds) ``` gives: ``` DatasetDict({ train: Dataset({ features: ['audio', 'timestamps_start', 'timestamps_end', 'speakers'], num_rows: 136 }) validation: Dataset({ features: ['audio', 'timestamps_start', 'timestamps_end', 'speakers'], num_rows: 18 }) test: Dataset({ features: ['audio', 'timestamps_start', 'timestamps_end', 'speakers'], num_rows: 16 }) }) ``` # Dataset source - Homepage: https://www.robots.ox.ac.uk/~vgg/data/voxconverse/ - Repository: https://github.com/joonson/voxconverse?tab=readme-ov-file - Preprocessed using [diarizers](https://github.com/kamilakesbi/diarizers/tree/main/datasets) # Citation ``` @article{chung2020spot, title={Spot the conversation: speaker diarisation in the wild}, author={Chung, Joon Son and Huh, Jaesung and Nagrani, Arsha and Afouras, Triantafyllos and Zisserman, Andrew}, booktitle={Interspeech}, year={2020} } ``` # Contribution Thanks to [@kamilakesbi](https://huggingface.co/kamilakesbi) and [@sanchit-gandhi](https://huggingface.co/sanchit-gandhi) for adding this dataset.