Datasets:

ArXiv:
DOI:
License:
evsizikova commited on
Commit
7d93abf
·
1 Parent(s): 05cf560

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ task_categories:
4
+ - image-classification
5
+ - image-segmentation
6
+ tags:
7
+ - medical
8
+ pretty_name: M-SYNTH
9
+ size_categories:
10
+ - 10K<n<100K
11
+ ---
12
+ # M-SYNTH
13
+
14
+ <!-- Provide a quick summary of the dataset. -->
15
+
16
+ M-SYNTH is a synthetic digital mammography (DM) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available [Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE)](https://github.com/DIDSR/VICTRE) toolkit.
17
+
18
+ ## Dataset Details
19
+
20
+ The dataset has the following characteristics:
21
+
22
+ * Breast density: dense, heterogeneously dense, scattered, fatty
23
+ * Mass radius (mm): 5.00, 7.00, 9.00
24
+ * Mass density: 1.0, 1.06, 1.1 (ratio of radiodensity of the mass to that of fibroglandular tissue)
25
+ * Relative dose: 20%, 40%, 60%, 80%, 100% of the clinically recommended dose for each density
26
+
27
+ ### Dataset Description
28
+
29
+ <!-- Provide a longer summary of what this dataset is. -->
30
+
31
+ - **Curated by:** [Elena Sizikova](https://esizikova.github.io/), [Niloufar Saharkhiz](https://www.linkedin.com/in/niloufar-saharkhiz/), [Diksha Sharma](https://www.linkedin.com/in/diksha-sharma-6059977/), [Miguel Lago](https://www.linkedin.com/in/milaan/), [Berkman Sahiner](https://www.linkedin.com/in/berkman-sahiner-6aa9a919/), [Jana Gut Delfino](https://www.linkedin.com/in/janadelfino/), [Aldo Badano](https://www.linkedin.com/in/aldobadano/)
32
+ - **License:** Creative Commons 1.0 Universal License (CC0)
33
+
34
+ ### Dataset Sources
35
+
36
+ <!-- Provide the basic links for the dataset. -->
37
+
38
+ - **Code:** [https://github.com/DIDSR/msynth-release](https://github.com/DIDSR/msynth-release)
39
+ - **Paper:** [https://neurips.cc/virtual/2023/poster/73701](https://neurips.cc/virtual/2023/poster/73701)
40
+ - **Demo:** [https://github.com/DIDSR/msynth-release/tree/master/examples](https://github.com/DIDSR/msynth-release/tree/master/examples)
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the dataset is intended to be used. -->
45
+
46
+ M-SYNTH is intended to facilitate testing of AI with pre-computed synthetic mammography data.
47
+
48
+ ### Direct Use
49
+
50
+ <!-- This section describes suitable use cases for the dataset. -->
51
+
52
+ M-SYNTH can be used to evaluate the effect of mass size and density, breast density, and dose on AI performance in lesion detection.
53
+ M-SYNTH can be used to either train or test pre-trained AI models.
54
+
55
+ ### Out-of-Scope Use
56
+
57
+ <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
58
+
59
+ M-SYNTH cannot be used in lieu of real patient examples to make performance determinations.
60
+
61
+
62
+ ## Dataset Structure
63
+
64
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
65
+
66
+ M-SYNTH is organized into a directory structure that indicates the parameters. The folder
67
+ ```
68
+ device_data_VICTREPhantoms_spic_[LESION_DENSITY]/[DOSE]/[BREAST_DENSITY]/2/[LESION_SIZE]/SIM/P2_[LESION_SIZE]_[BREAST_DENSITY].8337609.[PHANTOM_FILE_ID]/[PHANTOM_FILEID]/
69
+ ```
70
+ contains image files imaged with the specified parameters. Note that only examples with odd PHANTOM_FILEID contain lesions, others do not.
71
+
72
+
73
+ ```
74
+ $ tree data/device_data_VICTREPhantoms_spic_1.0/1.02e10/hetero/2/5.0/SIM/P2_5.0_hetero.8337609.1/1/
75
+
76
+ data/device_data_VICTREPhantoms_spic_1.0/1.02e10/hetero/2/5.0/SIM/P2_5.0_hetero.8337609.1/1/
77
+ ├── DICOM_dm
78
+ │   └── 000.dcm
79
+ ├── projection_DM1.loc
80
+ ├── projection_DM1.mhd
81
+ └── projection_DM1.raw
82
+ ```
83
+ Each folder contains mammogram data that can be read from .raw format (.mhd contains supporting data), or DICOM (.dcm) format.
84
+ Coordinates of lesions can be found in .loc files. Segmentations are stored in .raw format and can be found in data/segmentation_masks/* .
85
+
86
+ See [Github](https://github.com/DIDSR/msynth-release/tree/main/code) for examples of how to access the files, and [examples](https://github.com/DIDSR/msynth-release/tree/main/examples) for code to load each type of file.
87
+ ## Bias, Risks, and Limitations
88
+
89
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
90
+
91
+ Simulation-based testing is constrained to the parameter variability represented in the object model and the acquisition system.
92
+ There is a risk of misjudging model performance if the simulated examples do not capture the variability in real patients. Please
93
+ see the paper for a full discussion of biases, risks, and limitations.
94
+
95
+
96
+ ## Citation
97
+ ```
98
+ @article{sizikova2023knowledge,
99
+ title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
100
+ author={Sizikova, Elena and Saharkhiz, Niloufar and Sharma, Diksha and Lago, Miguel and Sahiner, Berkman and Delfino, Jana G. and Badano, Aldo},
101
+ journal={Advances in Neural Information Processing Systems},
102
+ volume={},
103
+ pages={16764--16778},
104
+ year={2023}
105
+ }
106
+ ```
107
+
108
+ ## Related Links
109
+ 1. [Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE)](https://www.fda.gov/medical-devices/science-and-research-medical-devices/victre-silico-breast-imaging-pipeline).
110
+ 2. [FDA Catalog of Regulatory Science Tools to Help Assess New Medical Device](https://www.fda.gov/medical-devices/science-and-research-medical-devices/catalog-regulatory-science-tools-help-assess-new-medical-devices).
111
+ 3. A. Badano, C. G. Graff, A. Badal, D. Sharma, R. Zeng, F. W. Samuelson, S. Glick, K. J. Myers. [Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial](http://dx.doi.org/10.1001/jamanetworkopen.2018.5474). JAMA Network Open 2018.
112
+ 4. A. Badano, M. Lago, E. Sizikova, J. G. Delfino, S. Guan, M. A. Anastasio, B. Sahiner. [The stochastic digital human is now enrolling for in silico imaging trials—methods and tools for generating digital cohorts.](http://dx.doi.org/10.1088/2516-1091/ad04c0) Progress in Biomedical Engineering 2023.
113
+ 5. E. Sizikova, N. Saharkhiz, D. Sharma, M. Lago, B. Sahiner, J. G. Delfino, A. Badano. [Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI](https://github.com/DIDSR/msynth-release). NeurIPS 2023 Workshop on Synthetic Data Generation with Generative AI.