SiddiqueAkhonda
commited on
Commit
•
a64db7a
1
Parent(s):
7dd58d2
Upload msynth.py
Browse files
msynth.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 for msynth dataset
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
'''
|
15 |
+
Custom dataset-builder for msynth dataset
|
16 |
+
'''
|
17 |
+
|
18 |
+
import os
|
19 |
+
import datasets
|
20 |
+
import glob
|
21 |
+
import re
|
22 |
+
|
23 |
+
logger = datasets.logging.get_logger(__name__)
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{sizikova2023knowledge,
|
27 |
+
title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
|
28 |
+
author={Sizikova, Elena and Saharkhiz, Niloufar and Sharma, Diksha and Lago, Miguel and Sahiner, Berkman and Delfino, Jana G. and Badano, Aldo},
|
29 |
+
journal={Advances in Neural Information Processing Systems},
|
30 |
+
volume={},
|
31 |
+
pages={16764--16778},
|
32 |
+
year={2023}
|
33 |
+
"""
|
34 |
+
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
M-SYNTH is a synthetic digital mammography (DM) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit.
|
38 |
+
Curated by: Elena Sizikova, Niloufar Saharkhiz, Diksha Sharma, Miguel Lago, Berkman Sahiner, Jana Gut Delfino, Aldo Badano
|
39 |
+
License: Creative Commons 1.0 Universal License (CC0)
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
_HOMEPAGE = "link to the dataset description page (FDA/CDRH/OSEL/DIDSR/VICTRE_project)"
|
44 |
+
|
45 |
+
_REPO = "https://huggingface.co/datasets/didsr/msynth/resolve/main/data"
|
46 |
+
|
47 |
+
# satting parameters for the URLS
|
48 |
+
_LESIONDENSITY = ["1.0","1.06", "1.1"]
|
49 |
+
_DOSE = ["20%","40%","60%","80%","100%"]
|
50 |
+
_DENSITY = ["fatty", "dense", "hetero","scattered"]
|
51 |
+
_SIZE = ["5.0","7.0", "9.0"]
|
52 |
+
_DETECTOR = 'SIM'
|
53 |
+
|
54 |
+
_DOSETABLE = {
|
55 |
+
"dense": {
|
56 |
+
"20%": '1.73e09',
|
57 |
+
"40%": '3.47e09',
|
58 |
+
"60%": '5.20e09',
|
59 |
+
"80%": '6.94e09',
|
60 |
+
"100%": '8.67e09'
|
61 |
+
},
|
62 |
+
"hetero": {
|
63 |
+
"20%": '2.04e09',
|
64 |
+
"40%": '4.08e09',
|
65 |
+
"60%": '6.12e09',
|
66 |
+
"80%": '8.16e09',
|
67 |
+
"100%": '1.02e10'
|
68 |
+
},
|
69 |
+
"scattered": {
|
70 |
+
"20%": '4.08e09',
|
71 |
+
"40%": '8.16e09',
|
72 |
+
"60%": '1.22e10',
|
73 |
+
"80%": '1.63e10',
|
74 |
+
"100%": '2.04e10'
|
75 |
+
},
|
76 |
+
"fatty": {
|
77 |
+
"20%": '4.44e09',
|
78 |
+
"40%": '8.88e09',
|
79 |
+
"60%": '1.33e10',
|
80 |
+
"80%": '1.78e10',
|
81 |
+
"100%": '2.22e10'
|
82 |
+
}
|
83 |
+
}
|
84 |
+
# Links to download readme files
|
85 |
+
_URLS = {
|
86 |
+
"meta_data": f"{_REPO}/metadata/bounds.zip",
|
87 |
+
"read_me": f"{_REPO}/README.md"
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# Define the labels or classes in your dataset
|
93 |
+
#_NAMES = ["raw", "mhd", "dicom", "loc"]
|
94 |
+
|
95 |
+
DATA_DIR = {"all_data": "SIM", "seg": "SIM", "info": "bounds"}
|
96 |
+
|
97 |
+
class msynthConfig(datasets.BuilderConfig):
|
98 |
+
"""msynth dataset"""
|
99 |
+
lesion_density = _LESIONDENSITY
|
100 |
+
dose = _DOSE
|
101 |
+
density = _DENSITY
|
102 |
+
size = _SIZE
|
103 |
+
def __init__(self, name, **kwargs):
|
104 |
+
super(msynthConfig, self).__init__(
|
105 |
+
version=datasets.Version("1.0.0"),
|
106 |
+
name=name,
|
107 |
+
description="msynth",
|
108 |
+
**kwargs,
|
109 |
+
)
|
110 |
+
|
111 |
+
class msynth(datasets.GeneratorBasedBuilder):
|
112 |
+
"""msynth dataset."""
|
113 |
+
|
114 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
115 |
+
BUILDER_CONFIGS = [
|
116 |
+
msynthConfig("device-data"),
|
117 |
+
msynthConfig("segmentation-mask"),
|
118 |
+
msynthConfig("metadata"),
|
119 |
+
]
|
120 |
+
|
121 |
+
def _info(self):
|
122 |
+
if self.config.name == "device-data":
|
123 |
+
# Define dataset features and keys
|
124 |
+
features = datasets.Features(
|
125 |
+
{
|
126 |
+
"Raw": datasets.Value("string"),
|
127 |
+
"mhd": datasets.Value("string"),
|
128 |
+
"loc": datasets.Value("string"),
|
129 |
+
"dcm": datasets.Value("string"),
|
130 |
+
"density": datasets.Value("string"),
|
131 |
+
"mass_radius": datasets.Value("float32")
|
132 |
+
}
|
133 |
+
)
|
134 |
+
#keys = ("image", "metadata")
|
135 |
+
elif self.config.name == "segmentation-mask":
|
136 |
+
# Define features and keys
|
137 |
+
features = datasets.Features(
|
138 |
+
{
|
139 |
+
"Raw": datasets.Value("string"),
|
140 |
+
"mhd": datasets.Value("string"),
|
141 |
+
"loc": datasets.Value("string"),
|
142 |
+
"density": datasets.Value("string"),
|
143 |
+
"mass_radius": datasets.Value("float32")
|
144 |
+
}
|
145 |
+
)
|
146 |
+
|
147 |
+
elif self.config.name == "metadata":
|
148 |
+
# Define features and keys
|
149 |
+
features = datasets.Features(
|
150 |
+
{
|
151 |
+
"fatty": datasets.Value("string"),
|
152 |
+
"dense": datasets.Value("string"),
|
153 |
+
"hetero": datasets.Value("string"),
|
154 |
+
"scattered": datasets.Value("string")
|
155 |
+
}
|
156 |
+
)
|
157 |
+
|
158 |
+
return datasets.DatasetInfo(
|
159 |
+
description=_DESCRIPTION,
|
160 |
+
features=features,
|
161 |
+
supervised_keys=None,
|
162 |
+
homepage=_HOMEPAGE,
|
163 |
+
citation=_CITATION,
|
164 |
+
)
|
165 |
+
|
166 |
+
def _split_generators(
|
167 |
+
self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
168 |
+
# Setting up the **config_kwargs parameters
|
169 |
+
if self.config.lesion_density == "all":
|
170 |
+
self.config.lesion_density = _LESIONDENSITY
|
171 |
+
|
172 |
+
if self.config.dose == "all":
|
173 |
+
self.config.dose = _DOSE
|
174 |
+
|
175 |
+
if self.config.density == "all":
|
176 |
+
self.config.density = _DENSITY
|
177 |
+
|
178 |
+
if self.config.size == "all":
|
179 |
+
self.config.size = _SIZE
|
180 |
+
|
181 |
+
|
182 |
+
if self.config.name == "device-data":
|
183 |
+
file_name = []
|
184 |
+
for ld in self.config.lesion_density:
|
185 |
+
for ds in self.config.dose:
|
186 |
+
for den in self.config.density:
|
187 |
+
value = _DOSETABLE[den][ds]
|
188 |
+
for sz in self.config.size:
|
189 |
+
temp_name = []
|
190 |
+
temp_name = (
|
191 |
+
"device_data_VICTREPhantoms_spic_"
|
192 |
+
+ ld
|
193 |
+
+ "/"
|
194 |
+
+ value
|
195 |
+
+ "/"
|
196 |
+
+ den
|
197 |
+
+ "/2/"
|
198 |
+
+ sz
|
199 |
+
+ "/"
|
200 |
+
+ _DETECTOR
|
201 |
+
+ ".zip"
|
202 |
+
)
|
203 |
+
file_name.append(_REPO +"/"+ temp_name)
|
204 |
+
|
205 |
+
# Downloading the data files
|
206 |
+
# data_dir = dl_manager.download_and_extract(file_name)
|
207 |
+
data_dir = []
|
208 |
+
for url in file_name:
|
209 |
+
try:
|
210 |
+
temp_down_file = []
|
211 |
+
# Attempt to download the file
|
212 |
+
temp_down_file = dl_manager.download_and_extract(url)
|
213 |
+
data_dir.append(temp_down_file)
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
# If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
|
217 |
+
logger.error(f"Failed to download {url}: {e}")
|
218 |
+
|
219 |
+
return [
|
220 |
+
datasets.SplitGenerator(
|
221 |
+
name="device-data",
|
222 |
+
gen_kwargs={
|
223 |
+
"files": [data_dir_t for data_dir_t in data_dir],
|
224 |
+
"name": "all_data",
|
225 |
+
},
|
226 |
+
),
|
227 |
+
]
|
228 |
+
|
229 |
+
elif self.config.name == "segmentation-mask":
|
230 |
+
seg_file_name = []
|
231 |
+
for den in self.config.density:
|
232 |
+
for sz in self.config.size:
|
233 |
+
temp_name = []
|
234 |
+
temp_name = (
|
235 |
+
"segmentation_masks"
|
236 |
+
+ "/"
|
237 |
+
+ den
|
238 |
+
+ "/2/"
|
239 |
+
+ sz
|
240 |
+
+ "/"
|
241 |
+
+ _DETECTOR
|
242 |
+
+ ".zip"
|
243 |
+
)
|
244 |
+
seg_file_name.append(_REPO+ "/" + temp_name)
|
245 |
+
|
246 |
+
# Downloading the files
|
247 |
+
seg_dir = []
|
248 |
+
#seg_dir = dl_manager.download_and_extract(seg_file_name)
|
249 |
+
|
250 |
+
for url in seg_file_name:
|
251 |
+
try:
|
252 |
+
# Attempt to download the file
|
253 |
+
temp_down_file = []
|
254 |
+
temp_down_file = dl_manager.download_and_extract(url)
|
255 |
+
seg_dir.append(temp_down_file)
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
# If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
|
259 |
+
logger.error(f"Failed to download {url}: {e}")
|
260 |
+
|
261 |
+
return [
|
262 |
+
datasets.SplitGenerator(
|
263 |
+
name="segmentation-mask",
|
264 |
+
gen_kwargs={
|
265 |
+
"files": [data_dir_t for data_dir_t in seg_dir],
|
266 |
+
"name": "seg",
|
267 |
+
},
|
268 |
+
),
|
269 |
+
]
|
270 |
+
|
271 |
+
elif self.config.name == "metadata":
|
272 |
+
meta_dir = dl_manager.download_and_extract(_URLS['meta_data'])
|
273 |
+
return [
|
274 |
+
datasets.SplitGenerator(
|
275 |
+
name="metadata",
|
276 |
+
gen_kwargs={
|
277 |
+
"files": meta_dir,
|
278 |
+
"name": "info",
|
279 |
+
},
|
280 |
+
),
|
281 |
+
]
|
282 |
+
|
283 |
+
|
284 |
+
def get_all_file_paths(self, root_directory):
|
285 |
+
file_paths = [] # List to store file paths
|
286 |
+
|
287 |
+
# Walk through the directory and its subdirectories using os.walk
|
288 |
+
for folder, _, files in os.walk(root_directory):
|
289 |
+
for file in files:
|
290 |
+
if file.endswith('.raw'):
|
291 |
+
# Get the full path of the file
|
292 |
+
file_path = os.path.join(folder, file)
|
293 |
+
file_paths.append(file_path)
|
294 |
+
return file_paths
|
295 |
+
|
296 |
+
def get_support_file_path(self, raw_file_path, ext):
|
297 |
+
folder_path = os.path.dirname(raw_file_path)
|
298 |
+
# Use os.path.basename() to extract the filename
|
299 |
+
raw_file_name = os.path.basename(raw_file_path)
|
300 |
+
# Use os.path.splitext() to split the filename into root and extension
|
301 |
+
root, extension = os.path.splitext(raw_file_name)
|
302 |
+
if ext == "dcm":
|
303 |
+
supp_file_name = f"000.{ext}"
|
304 |
+
file_path = os.path.join(folder_path,"DICOM_dm",supp_file_name)
|
305 |
+
else:
|
306 |
+
supp_file_name = f"{root}.{ext}"
|
307 |
+
file_path = os.path.join(folder_path, supp_file_name)
|
308 |
+
|
309 |
+
if os.path.isfile(file_path):
|
310 |
+
return file_path
|
311 |
+
else:
|
312 |
+
return "Not available for this raw file"
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
def _generate_examples(self, files, name):
|
317 |
+
if self.config.name == "device-data":
|
318 |
+
key = 0
|
319 |
+
data_dir = []
|
320 |
+
for folder in files:
|
321 |
+
tmp_dir = []
|
322 |
+
tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
|
323 |
+
data_dir = data_dir + tmp_dir
|
324 |
+
|
325 |
+
for path in data_dir:
|
326 |
+
res_dic = {}
|
327 |
+
for word in _DENSITY:
|
328 |
+
if word in path:
|
329 |
+
breast_density = word
|
330 |
+
pattern = rf"(\d+\.\d+)_{word}"
|
331 |
+
match = re.search(pattern, path)
|
332 |
+
matched_text = match.group(1)
|
333 |
+
break
|
334 |
+
|
335 |
+
# Get image id to filter the respective row of the csv
|
336 |
+
image_id = os.path.basename(path)
|
337 |
+
# Use os.path.splitext() to split the filename into root and extension
|
338 |
+
root, extension = os.path.splitext(image_id)
|
339 |
+
# Get the extension without the dot
|
340 |
+
image_labels = extension.lstrip(".")
|
341 |
+
res_dic["Raw"] = path
|
342 |
+
res_dic["mhd"] = self.get_support_file_path(path, "mhd")
|
343 |
+
res_dic["loc"] = self.get_support_file_path(path, "loc")
|
344 |
+
if self.config.name == "device-data":
|
345 |
+
res_dic["dcm"] = self.get_support_file_path(path, "dcm")
|
346 |
+
res_dic["density"] = breast_density
|
347 |
+
res_dic["mass_radius"] = matched_text
|
348 |
+
|
349 |
+
yield key, res_dic
|
350 |
+
key += 1
|
351 |
+
|
352 |
+
|
353 |
+
if self.config.name == "segmentation-mask":
|
354 |
+
key = 0
|
355 |
+
data_dir = []
|
356 |
+
for folder in files:
|
357 |
+
tmp_dir = []
|
358 |
+
tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
|
359 |
+
data_dir = data_dir + tmp_dir
|
360 |
+
|
361 |
+
for path in data_dir:
|
362 |
+
res_dic = {}
|
363 |
+
for word in _DENSITY:
|
364 |
+
if word in path:
|
365 |
+
breast_density = word
|
366 |
+
pattern = rf"(\d+\.\d+)_{word}"
|
367 |
+
match = re.search(pattern, path)
|
368 |
+
matched_text = match.group(1)
|
369 |
+
break
|
370 |
+
|
371 |
+
# Get image id to filter the respective row of the csv
|
372 |
+
image_id = os.path.basename(path)
|
373 |
+
# Use os.path.splitext() to split the filename into root and extension
|
374 |
+
root, extension = os.path.splitext(image_id)
|
375 |
+
# Get the extension without the dot
|
376 |
+
image_labels = extension.lstrip(".")
|
377 |
+
res_dic["Raw"] = path
|
378 |
+
res_dic["mhd"] = self.get_support_file_path(path, "mhd")
|
379 |
+
res_dic["loc"] = self.get_support_file_path(path, "loc")
|
380 |
+
res_dic["density"] = breast_density
|
381 |
+
res_dic["mass_radius"] = matched_text
|
382 |
+
|
383 |
+
yield key, res_dic
|
384 |
+
key += 1
|
385 |
+
|
386 |
+
if self.config.name == "metadata":
|
387 |
+
key = 0
|
388 |
+
examples = list()
|
389 |
+
meta_dir = os.path.join(files, DATA_DIR[name])
|
390 |
+
|
391 |
+
res_dic = {
|
392 |
+
"fatty": os.path.join(meta_dir,'bounds_fatty.npy'),
|
393 |
+
"dense": os.path.join(meta_dir,'bounds_dense.npy'),
|
394 |
+
"hetero": os.path.join(meta_dir,'bounds_hetero.npy'),
|
395 |
+
"scattered": os.path.join(meta_dir,'bounds_scattered.npy')
|
396 |
+
}
|
397 |
+
yield key, res_dic
|
398 |
+
key +=1
|