Datasets:

ArXiv:
File size: 12,065 Bytes
ee03b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import types
from typing import List, Optional, Tuple, Union

import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextModelOutput

from diffusers.models import PriorTransformer
from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline
from diffusers.schedulers import UnCLIPScheduler
from diffusers.utils import logging, randn_tensor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
    image = image.to(device=device)
    image_embeddings = image  # take image as image_embeddings
    image_embeddings = image_embeddings.unsqueeze(1)

    # duplicate image embeddings for each generation per prompt, using mps friendly method
    bs_embed, seq_len, _ = image_embeddings.shape
    image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
    image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

    if do_classifier_free_guidance:
        uncond_embeddings = torch.zeros_like(image_embeddings)

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        image_embeddings = torch.cat([uncond_embeddings, image_embeddings])

    return image_embeddings


class StableUnCLIPPipeline(DiffusionPipeline):
    def __init__(
        self,
        prior: PriorTransformer,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModelWithProjection,
        prior_scheduler: UnCLIPScheduler,
        decoder_pipe_kwargs: Optional[dict] = None,
    ):
        super().__init__()

        decoder_pipe_kwargs = {"image_encoder": None} if decoder_pipe_kwargs is None else decoder_pipe_kwargs

        decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype

        self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
            "lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs
        )

        # replace `_encode_image` method
        self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe)

        self.register_modules(
            prior=prior,
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            prior_scheduler=prior_scheduler,
        )

    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
    ):
        if text_model_output is None:
            batch_size = len(prompt) if isinstance(prompt, list) else 1
            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            text_mask = text_inputs.attention_mask.bool().to(device)

            if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
                removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]

            text_encoder_output = self.text_encoder(text_input_ids.to(device))

            text_embeddings = text_encoder_output.text_embeds
            text_encoder_hidden_states = text_encoder_output.last_hidden_state

        else:
            batch_size = text_model_output[0].shape[0]
            text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
            text_mask = text_attention_mask

        text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
            uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))

            uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return text_embeddings, text_encoder_hidden_states, text_mask

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"):
            return self.device
        for module in self.prior.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        self.decoder_pipe.to(torch_device)
        super().to(torch_device)

    @torch.no_grad()
    def __call__(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_images_per_prompt: int = 1,
        prior_num_inference_steps: int = 25,
        generator: Optional[torch.Generator] = None,
        prior_latents: Optional[torch.FloatTensor] = None,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
        prior_guidance_scale: float = 4.0,
        decoder_guidance_scale: float = 8.0,
        decoder_num_inference_steps: int = 50,
        decoder_num_images_per_prompt: Optional[int] = 1,
        decoder_eta: float = 0.0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ):
        if prompt is not None:
            if isinstance(prompt, str):
                batch_size = 1
            elif isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        else:
            batch_size = text_model_output[0].shape[0]

        device = self._execution_device

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0

        text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
        )

        # prior

        self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
        prior_timesteps_tensor = self.prior_scheduler.timesteps

        embedding_dim = self.prior.config.embedding_dim

        prior_latents = self.prepare_latents(
            (batch_size, embedding_dim),
            text_embeddings.dtype,
            device,
            generator,
            prior_latents,
            self.prior_scheduler,
        )

        for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
                proj_embedding=text_embeddings,
                encoder_hidden_states=text_encoder_hidden_states,
                attention_mask=text_mask,
            ).predicted_image_embedding

            if do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            if i + 1 == prior_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = prior_timesteps_tensor[i + 1]

            prior_latents = self.prior_scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=prior_latents,
                generator=generator,
                prev_timestep=prev_timestep,
            ).prev_sample

        prior_latents = self.prior.post_process_latents(prior_latents)

        image_embeddings = prior_latents

        output = self.decoder_pipe(
            image=image_embeddings,
            height=height,
            width=width,
            num_inference_steps=decoder_num_inference_steps,
            guidance_scale=decoder_guidance_scale,
            generator=generator,
            output_type=output_type,
            return_dict=return_dict,
            num_images_per_prompt=decoder_num_images_per_prompt,
            eta=decoder_eta,
        )
        return output