File size: 43,166 Bytes
0b1273f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
#
# Copyright 2023 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
from collections import OrderedDict
from copy import copy
from typing import List, Optional, Union
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import PIL
import tensorrt as trt
import torch
from huggingface_hub import snapshot_download
from onnx import shape_inference
from polygraphy import cuda
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.onnx.loader import fold_constants
from polygraphy.backend.trt import (
CreateConfig,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
StableDiffusionImg2ImgPipeline,
StableDiffusionPipelineOutput,
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import DIFFUSERS_CACHE, logging
"""
Installation instructions
python3 -m pip install --upgrade transformers diffusers>=0.16.0
python3 -m pip install --upgrade tensorrt>=8.6.1
python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
python3 -m pip install onnxruntime
"""
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()}
def device_view(t):
return cuda.DeviceView(ptr=t.data_ptr(), shape=t.shape, dtype=torch_to_numpy_dtype_dict[t.dtype])
def preprocess_image(image):
"""
image: torch.Tensor
"""
w, h = image.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h))
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).contiguous()
return 2.0 * image - 1.0
class Engine:
def __init__(self, engine_path):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
def __del__(self):
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)]
del self.engine
del self.context
del self.buffers
del self.tensors
def build(
self,
onnx_path,
fp16,
input_profile=None,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
workspace_size=0,
):
logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
config_kwargs = {}
config_kwargs["preview_features"] = [trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]
if enable_preview:
# Faster dynamic shapes made optional since it increases engine build time.
config_kwargs["preview_features"].append(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805)
if workspace_size > 0:
config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size}
if not enable_all_tactics:
config_kwargs["tactic_sources"] = []
engine = engine_from_network(
network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]),
config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **config_kwargs),
save_timing_cache=timing_cache,
)
save_engine(engine, path=self.engine_path)
def load(self):
logger.warning(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self):
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device="cuda"):
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype)
def infer(self, feed_dict, stream):
start_binding, end_binding = trt_util.get_active_profile_bindings(self.context)
# shallow copy of ordered dict
device_buffers = copy(self.buffers)
for name, buf in feed_dict.items():
assert isinstance(buf, cuda.DeviceView)
device_buffers[name] = buf
bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()]
noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr)
if not noerror:
raise ValueError("ERROR: inference failed.")
return self.tensors
class Optimizer:
def __init__(self, onnx_graph):
self.graph = gs.import_onnx(onnx_graph)
def cleanup(self, return_onnx=False):
self.graph.cleanup().toposort()
if return_onnx:
return gs.export_onnx(self.graph)
def select_outputs(self, keep, names=None):
self.graph.outputs = [self.graph.outputs[o] for o in keep]
if names:
for i, name in enumerate(names):
self.graph.outputs[i].name = name
def fold_constants(self, return_onnx=False):
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
def infer_shapes(self, return_onnx=False):
onnx_graph = gs.export_onnx(self.graph)
if onnx_graph.ByteSize() > 2147483648:
raise TypeError("ERROR: model size exceeds supported 2GB limit")
else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
self.graph = gs.import_onnx(onnx_graph)
if return_onnx:
return onnx_graph
class BaseModel:
def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77):
self.model = model
self.name = "SD Model"
self.fp16 = fp16
self.device = device
self.min_batch = 1
self.max_batch = max_batch_size
self.min_image_shape = 256 # min image resolution: 256x256
self.max_image_shape = 1024 # max image resolution: 1024x1024
self.min_latent_shape = self.min_image_shape // 8
self.max_latent_shape = self.max_image_shape // 8
self.embedding_dim = embedding_dim
self.text_maxlen = text_maxlen
def get_model(self):
return self.model
def get_input_names(self):
pass
def get_output_names(self):
pass
def get_dynamic_axes(self):
return None
def get_sample_input(self, batch_size, image_height, image_width):
pass
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
return None
def get_shape_dict(self, batch_size, image_height, image_width):
return None
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
onnx_opt_graph = opt.cleanup(return_onnx=True)
return onnx_opt_graph
def check_dims(self, batch_size, image_height, image_width):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
assert image_height % 8 == 0 or image_width % 8 == 0
latent_height = image_height // 8
latent_width = image_width // 8
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
return (latent_height, latent_width)
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
latent_height = image_height // 8
latent_width = image_width // 8
min_image_height = image_height if static_shape else self.min_image_shape
max_image_height = image_height if static_shape else self.max_image_shape
min_image_width = image_width if static_shape else self.min_image_shape
max_image_width = image_width if static_shape else self.max_image_shape
min_latent_height = latent_height if static_shape else self.min_latent_shape
max_latent_height = latent_height if static_shape else self.max_latent_shape
min_latent_width = latent_width if static_shape else self.min_latent_shape
max_latent_width = latent_width if static_shape else self.max_latent_shape
return (
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
)
def getOnnxPath(model_name, onnx_dir, opt=True):
return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx")
def getEnginePath(model_name, engine_dir):
return os.path.join(engine_dir, model_name + ".plan")
def build_engines(
models: dict,
engine_dir,
onnx_dir,
onnx_opset,
opt_image_height,
opt_image_width,
opt_batch_size=1,
force_engine_rebuild=False,
static_batch=False,
static_shape=True,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
max_workspace_size=0,
):
built_engines = {}
if not os.path.isdir(onnx_dir):
os.makedirs(onnx_dir)
if not os.path.isdir(engine_dir):
os.makedirs(engine_dir)
# Export models to ONNX
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
if force_engine_rebuild or not os.path.exists(engine_path):
logger.warning("Building Engines...")
logger.warning("Engine build can take a while to complete")
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
if force_engine_rebuild or not os.path.exists(onnx_path):
logger.warning(f"Exporting model: {onnx_path}")
model = model_obj.get_model()
with torch.inference_mode(), torch.autocast("cuda"):
inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width)
torch.onnx.export(
model,
inputs,
onnx_path,
export_params=True,
opset_version=onnx_opset,
do_constant_folding=True,
input_names=model_obj.get_input_names(),
output_names=model_obj.get_output_names(),
dynamic_axes=model_obj.get_dynamic_axes(),
)
del model
torch.cuda.empty_cache()
gc.collect()
else:
logger.warning(f"Found cached model: {onnx_path}")
# Optimize onnx
if force_engine_rebuild or not os.path.exists(onnx_opt_path):
logger.warning(f"Generating optimizing model: {onnx_opt_path}")
onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path))
onnx.save(onnx_opt_graph, onnx_opt_path)
else:
logger.warning(f"Found cached optimized model: {onnx_opt_path} ")
# Build TensorRT engines
for model_name, model_obj in models.items():
engine_path = getEnginePath(model_name, engine_dir)
engine = Engine(engine_path)
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False)
onnx_opt_path = getOnnxPath(model_name, onnx_dir)
if force_engine_rebuild or not os.path.exists(engine.engine_path):
engine.build(
onnx_opt_path,
fp16=True,
input_profile=model_obj.get_input_profile(
opt_batch_size,
opt_image_height,
opt_image_width,
static_batch=static_batch,
static_shape=static_shape,
),
enable_preview=enable_preview,
timing_cache=timing_cache,
workspace_size=max_workspace_size,
)
built_engines[model_name] = engine
# Load and activate TensorRT engines
for model_name, model_obj in models.items():
engine = built_engines[model_name]
engine.load()
engine.activate()
return built_engines
def runEngine(engine, feed_dict, stream):
return engine.infer(feed_dict, stream)
class CLIP(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(CLIP, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "CLIP"
def get_input_names(self):
return ["input_ids"]
def get_output_names(self):
return ["text_embeddings", "pooler_output"]
def get_dynamic_axes(self):
return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
self.check_dims(batch_size, image_height, image_width)
min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims(
batch_size, image_height, image_width, static_batch, static_shape
)
return {
"input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)]
}
def get_shape_dict(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return {
"input_ids": (batch_size, self.text_maxlen),
"text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device)
def optimize(self, onnx_graph):
opt = Optimizer(onnx_graph)
opt.select_outputs([0]) # delete graph output#1
opt.cleanup()
opt.fold_constants()
opt.infer_shapes()
opt.select_outputs([0], names=["text_embeddings"]) # rename network output
opt_onnx_graph = opt.cleanup(return_onnx=True)
return opt_onnx_graph
def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False):
return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class UNet(BaseModel):
def __init__(
self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4
):
super(UNet, self).__init__(
model=model,
fp16=fp16,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
text_maxlen=text_maxlen,
)
self.unet_dim = unet_dim
self.name = "UNet"
def get_input_names(self):
return ["sample", "timestep", "encoder_hidden_states"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {
"sample": {0: "2B", 2: "H", 3: "W"},
"encoder_hidden_states": {0: "2B"},
"latent": {0: "2B", 2: "H", 3: "W"},
}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"sample": [
(2 * min_batch, self.unet_dim, min_latent_height, min_latent_width),
(2 * batch_size, self.unet_dim, latent_height, latent_width),
(2 * max_batch, self.unet_dim, max_latent_height, max_latent_width),
],
"encoder_hidden_states": [
(2 * min_batch, self.text_maxlen, self.embedding_dim),
(2 * batch_size, self.text_maxlen, self.embedding_dim),
(2 * max_batch, self.text_maxlen, self.embedding_dim),
],
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"sample": (2 * batch_size, self.unet_dim, latent_height, latent_width),
"encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim),
"latent": (2 * batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
dtype = torch.float16 if self.fp16 else torch.float32
return (
torch.randn(
2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device
),
torch.tensor([1.0], dtype=torch.float32, device=self.device),
torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
)
def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False):
return UNet(
model,
fp16=True,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
unet_dim=(9 if inpaint else 4),
)
class VAE(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(VAE, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "VAE decoder"
def get_input_names(self):
return ["latent"]
def get_output_names(self):
return ["images"]
def get_dynamic_axes(self):
return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
_,
_,
_,
_,
min_latent_height,
max_latent_height,
min_latent_width,
max_latent_width,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"latent": [
(min_batch, 4, min_latent_height, min_latent_width),
(batch_size, 4, latent_height, latent_width),
(max_batch, 4, max_latent_height, max_latent_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"latent": (batch_size, 4, latent_height, latent_width),
"images": (batch_size, 3, image_height, image_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False):
return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class TorchVAEEncoder(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.vae_encoder = model
def forward(self, x):
return self.vae_encoder.encode(x).latent_dist.sample()
class VAEEncoder(BaseModel):
def __init__(self, model, device, max_batch_size, embedding_dim):
super(VAEEncoder, self).__init__(
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim
)
self.name = "VAE encoder"
def get_model(self):
vae_encoder = TorchVAEEncoder(self.model)
return vae_encoder
def get_input_names(self):
return ["images"]
def get_output_names(self):
return ["latent"]
def get_dynamic_axes(self):
return {"images": {0: "B", 2: "8H", 3: "8W"}, "latent": {0: "B", 2: "H", 3: "W"}}
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
assert batch_size >= self.min_batch and batch_size <= self.max_batch
min_batch = batch_size if static_batch else self.min_batch
max_batch = batch_size if static_batch else self.max_batch
self.check_dims(batch_size, image_height, image_width)
(
min_batch,
max_batch,
min_image_height,
max_image_height,
min_image_width,
max_image_width,
_,
_,
_,
_,
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape)
return {
"images": [
(min_batch, 3, min_image_height, min_image_width),
(batch_size, 3, image_height, image_width),
(max_batch, 3, max_image_height, max_image_width),
]
}
def get_shape_dict(self, batch_size, image_height, image_width):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
return {
"images": (batch_size, 3, image_height, image_width),
"latent": (batch_size, 4, latent_height, latent_width),
}
def get_sample_input(self, batch_size, image_height, image_width):
self.check_dims(batch_size, image_height, image_width)
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
def make_VAEEncoder(model, device, max_batch_size, embedding_dim, inpaint=False):
return VAEEncoder(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim)
class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
r"""
Pipeline for image-to-image generation using TensorRT accelerated Stable Diffusion.
This model inherits from [`StableDiffusionImg2ImgPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae", "vae_encoder"],
image_height: int = 512,
image_width: int = 512,
max_batch_size: int = 16,
# ONNX export parameters
onnx_opset: int = 17,
onnx_dir: str = "onnx",
# TensorRT engine build parameters
engine_dir: str = "engine",
build_preview_features: bool = True,
force_engine_rebuild: bool = False,
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
)
self.vae.forward = self.vae.decode
self.stages = stages
self.image_height, self.image_width = image_height, image_width
self.inpaint = False
self.onnx_opset = onnx_opset
self.onnx_dir = onnx_dir
self.engine_dir = engine_dir
self.force_engine_rebuild = force_engine_rebuild
self.timing_cache = timing_cache
self.build_static_batch = False
self.build_dynamic_shape = False
self.build_preview_features = build_preview_features
self.max_batch_size = max_batch_size
# TODO: Restrict batch size to 4 for larger image dimensions as a WAR for TensorRT limitation.
if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512:
self.max_batch_size = 4
self.stream = None # loaded in loadResources()
self.models = {} # loaded in __loadModels()
self.engine = {} # loaded in build_engines()
def __loadModels(self):
# Load pipeline models
self.embedding_dim = self.text_encoder.config.hidden_size
models_args = {
"device": self.torch_device,
"max_batch_size": self.max_batch_size,
"embedding_dim": self.embedding_dim,
"inpaint": self.inpaint,
}
if "clip" in self.stages:
self.models["clip"] = make_CLIP(self.text_encoder, **models_args)
if "unet" in self.stages:
self.models["unet"] = make_UNet(self.unet, **models_args)
if "vae" in self.stages:
self.models["vae"] = make_VAE(self.vae, **models_args)
if "vae_encoder" in self.stages:
self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args)
@classmethod
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
cls.cached_folder = (
pretrained_model_name_or_path
if os.path.isdir(pretrained_model_name_or_path)
else snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
)
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False):
super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings)
self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir)
self.engine_dir = os.path.join(self.cached_folder, self.engine_dir)
self.timing_cache = os.path.join(self.cached_folder, self.timing_cache)
# set device
self.torch_device = self._execution_device
logger.warning(f"Running inference on device: {self.torch_device}")
# load models
self.__loadModels()
# build engines
self.engine = build_engines(
self.models,
self.engine_dir,
self.onnx_dir,
self.onnx_opset,
opt_image_height=self.image_height,
opt_image_width=self.image_width,
force_engine_rebuild=self.force_engine_rebuild,
static_batch=self.build_static_batch,
static_shape=not self.build_dynamic_shape,
enable_preview=self.build_preview_features,
timing_cache=self.timing_cache,
)
return self
def __initialize_timesteps(self, timesteps, strength):
self.scheduler.set_timesteps(timesteps)
offset = self.scheduler.steps_offset if hasattr(self.scheduler, "steps_offset") else 0
init_timestep = int(timesteps * strength) + offset
init_timestep = min(init_timestep, timesteps)
t_start = max(timesteps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start:].to(self.torch_device)
return timesteps, t_start
def __preprocess_images(self, batch_size, images=()):
init_images = []
for image in images:
image = image.to(self.torch_device).float()
image = image.repeat(batch_size, 1, 1, 1)
init_images.append(image)
return tuple(init_images)
def __encode_image(self, init_image):
init_latents = runEngine(self.engine["vae_encoder"], {"images": device_view(init_image)}, self.stream)[
"latent"
]
init_latents = 0.18215 * init_latents
return init_latents
def __encode_prompt(self, prompt, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
"""
# Tokenize prompt
text_input_ids = (
self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
text_input_ids_inp = device_view(text_input_ids)
# NOTE: output tensor for CLIP must be cloned because it will be overwritten when called again for negative prompt
text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids_inp}, self.stream)[
"text_embeddings"
].clone()
# Tokenize negative prompt
uncond_input_ids = (
self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
.input_ids.type(torch.int32)
.to(self.torch_device)
)
uncond_input_ids_inp = device_view(uncond_input_ids)
uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids_inp}, self.stream)[
"text_embeddings"
]
# Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16)
return text_embeddings
def __denoise_latent(
self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None
):
if not isinstance(timesteps, torch.Tensor):
timesteps = self.scheduler.timesteps
for step_index, timestep in enumerate(timesteps):
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
if isinstance(mask, torch.Tensor):
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
# Predict the noise residual
timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep
sample_inp = device_view(latent_model_input)
timestep_inp = device_view(timestep_float)
embeddings_inp = device_view(text_embeddings)
noise_pred = runEngine(
self.engine["unet"],
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp},
self.stream,
)["latent"]
# Perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample
latents = 1.0 / 0.18215 * latents
return latents
def __decode_latent(self, latents):
images = runEngine(self.engine["vae"], {"latent": device_view(latents)}, self.stream)["images"]
images = (images / 2 + 0.5).clamp(0, 1)
return images.cpu().permute(0, 2, 3, 1).float().numpy()
def __loadResources(self, image_height, image_width, batch_size):
self.stream = cuda.Stream()
# Allocate buffers for TensorRT engine bindings
for model_name, obj in self.models.items():
self.engine[model_name].allocate_buffers(
shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
"""
self.generator = generator
self.denoising_steps = num_inference_steps
self.guidance_scale = guidance_scale
# Pre-compute latent input scales and linear multistep coefficients
self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device)
# Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
prompt = [prompt]
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}")
if negative_prompt is None:
negative_prompt = [""] * batch_size
if negative_prompt is not None and isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
assert len(prompt) == len(negative_prompt)
if batch_size > self.max_batch_size:
raise ValueError(
f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4"
)
# load resources
self.__loadResources(self.image_height, self.image_width, batch_size)
with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER):
# Initialize timesteps
timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength)
latent_timestep = timesteps[:1].repeat(batch_size)
# Pre-process input image
if isinstance(image, PIL.Image.Image):
image = preprocess_image(image)
init_image = self.__preprocess_images(batch_size, (image,))[0]
# VAE encode init image
init_latents = self.__encode_image(init_image)
# Add noise to latents using timesteps
noise = torch.randn(
init_latents.shape, generator=self.generator, device=self.torch_device, dtype=torch.float32
)
latents = self.scheduler.add_noise(init_latents, noise, latent_timestep)
# CLIP text encoder
text_embeddings = self.__encode_prompt(prompt, negative_prompt)
# UNet denoiser
latents = self.__denoise_latent(latents, text_embeddings, timesteps=timesteps, step_offset=t_start)
# VAE decode latent
images = self.__decode_latent(latents)
images = self.numpy_to_pil(images)
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=None)
|