File size: 23,561 Bytes
4ba2b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import pi
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from PIL import Image
from diffusers import DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DModel
from diffusers.utils.torch_utils import randn_tensor
class DPSPipeline(DiffusionPipeline):
r"""
Pipeline for Diffusion Posterior Sampling.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
measurement: torch.Tensor,
operator: torch.nn.Module,
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 1000,
output_type: Optional[str] = "pil",
return_dict: bool = True,
zeta: float = 0.3,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
measurement (`torch.Tensor`, *required*):
A 'torch.Tensor', the corrupted image
operator (`torch.nn.Module`, *required*):
A 'torch.nn.Module', the operator generating the corrupted image
loss_fn (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *required*):
A 'Callable[[torch.Tensor, torch.Tensor], torch.Tensor]', the loss function used
between the measurements, for most of the cases using RMSE is fine.
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 1000):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Example:
```py
>>> from diffusers import DDPMPipeline
>>> # load model and scheduler
>>> pipe = DDPMPipeline.from_pretrained("google/ddpm-cat-256")
>>> # run pipeline in inference (sample random noise and denoise)
>>> image = pipe().images[0]
>>> # save image
>>> image.save("ddpm_generated_image.png")
```
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size, int):
image_shape = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if self.device.type == "mps":
# randn does not work reproducibly on mps
image = randn_tensor(image_shape, generator=generator)
image = image.to(self.device)
else:
image = randn_tensor(image_shape, generator=generator, device=self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
with torch.enable_grad():
# 1. predict noise model_output
image = image.requires_grad_()
model_output = self.unet(image, t).sample
# 2. compute previous image x'_{t-1} and original prediction x0_{t}
scheduler_out = self.scheduler.step(model_output, t, image, generator=generator)
image_pred, origi_pred = scheduler_out.prev_sample, scheduler_out.pred_original_sample
# 3. compute y'_t = f(x0_{t})
measurement_pred = operator(origi_pred)
# 4. compute loss = d(y, y'_t-1)
loss = loss_fn(measurement, measurement_pred)
loss.backward()
print("distance: {0:.4f}".format(loss.item()))
with torch.no_grad():
image_pred = image_pred - zeta * image.grad
image = image_pred.detach()
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
if __name__ == "__main__":
import scipy
from torch import nn
from torchvision.utils import save_image
# defining the operators f(.) of y = f(x)
# super-resolution operator
class SuperResolutionOperator(nn.Module):
def __init__(self, in_shape, scale_factor):
super().__init__()
# Resizer local class, do not use outiside the SR operator class
class Resizer(nn.Module):
def __init__(self, in_shape, scale_factor=None, output_shape=None, kernel=None, antialiasing=True):
super(Resizer, self).__init__()
# First standardize values and fill missing arguments (if needed) by deriving scale from output shape or vice versa
scale_factor, output_shape = self.fix_scale_and_size(in_shape, output_shape, scale_factor)
# Choose interpolation method, each method has the matching kernel size
def cubic(x):
absx = np.abs(x)
absx2 = absx**2
absx3 = absx**3
return (1.5 * absx3 - 2.5 * absx2 + 1) * (absx <= 1) + (
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
) * ((1 < absx) & (absx <= 2))
def lanczos2(x):
return (
(np.sin(pi * x) * np.sin(pi * x / 2) + np.finfo(np.float32).eps)
/ ((pi**2 * x**2 / 2) + np.finfo(np.float32).eps)
) * (abs(x) < 2)
def box(x):
return ((-0.5 <= x) & (x < 0.5)) * 1.0
def lanczos3(x):
return (
(np.sin(pi * x) * np.sin(pi * x / 3) + np.finfo(np.float32).eps)
/ ((pi**2 * x**2 / 3) + np.finfo(np.float32).eps)
) * (abs(x) < 3)
def linear(x):
return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1))
method, kernel_width = {
"cubic": (cubic, 4.0),
"lanczos2": (lanczos2, 4.0),
"lanczos3": (lanczos3, 6.0),
"box": (box, 1.0),
"linear": (linear, 2.0),
None: (cubic, 4.0), # set default interpolation method as cubic
}.get(kernel)
# Antialiasing is only used when downscaling
antialiasing *= np.any(np.array(scale_factor) < 1)
# Sort indices of dimensions according to scale of each dimension. since we are going dim by dim this is efficient
sorted_dims = np.argsort(np.array(scale_factor))
self.sorted_dims = [int(dim) for dim in sorted_dims if scale_factor[dim] != 1]
# Iterate over dimensions to calculate local weights for resizing and resize each time in one direction
field_of_view_list = []
weights_list = []
for dim in self.sorted_dims:
# for each coordinate (along 1 dim), calculate which coordinates in the input image affect its result and the
# weights that multiply the values there to get its result.
weights, field_of_view = self.contributions(
in_shape[dim], output_shape[dim], scale_factor[dim], method, kernel_width, antialiasing
)
# convert to torch tensor
weights = torch.tensor(weights.T, dtype=torch.float32)
# We add singleton dimensions to the weight matrix so we can multiply it with the big tensor we get for
# tmp_im[field_of_view.T], (bsxfun style)
weights_list.append(
nn.Parameter(
torch.reshape(weights, list(weights.shape) + (len(scale_factor) - 1) * [1]),
requires_grad=False,
)
)
field_of_view_list.append(
nn.Parameter(
torch.tensor(field_of_view.T.astype(np.int32), dtype=torch.long), requires_grad=False
)
)
self.field_of_view = nn.ParameterList(field_of_view_list)
self.weights = nn.ParameterList(weights_list)
def forward(self, in_tensor):
x = in_tensor
# Use the affecting position values and the set of weights to calculate the result of resizing along this 1 dim
for dim, fov, w in zip(self.sorted_dims, self.field_of_view, self.weights):
# To be able to act on each dim, we swap so that dim 0 is the wanted dim to resize
x = torch.transpose(x, dim, 0)
# This is a bit of a complicated multiplication: x[field_of_view.T] is a tensor of order image_dims+1.
# for each pixel in the output-image it matches the positions the influence it from the input image (along 1 dim
# only, this is why it only adds 1 dim to 5the shape). We then multiply, for each pixel, its set of positions with
# the matching set of weights. we do this by this big tensor element-wise multiplication (MATLAB bsxfun style:
# matching dims are multiplied element-wise while singletons mean that the matching dim is all multiplied by the
# same number
x = torch.sum(x[fov] * w, dim=0)
# Finally we swap back the axes to the original order
x = torch.transpose(x, dim, 0)
return x
def fix_scale_and_size(self, input_shape, output_shape, scale_factor):
# First fixing the scale-factor (if given) to be standardized the function expects (a list of scale factors in the
# same size as the number of input dimensions)
if scale_factor is not None:
# By default, if scale-factor is a scalar we assume 2d resizing and duplicate it.
if np.isscalar(scale_factor) and len(input_shape) > 1:
scale_factor = [scale_factor, scale_factor]
# We extend the size of scale-factor list to the size of the input by assigning 1 to all the unspecified scales
scale_factor = list(scale_factor)
scale_factor = [1] * (len(input_shape) - len(scale_factor)) + scale_factor
# Fixing output-shape (if given): extending it to the size of the input-shape, by assigning the original input-size
# to all the unspecified dimensions
if output_shape is not None:
output_shape = list(input_shape[len(output_shape) :]) + list(np.uint(np.array(output_shape)))
# Dealing with the case of non-give scale-factor, calculating according to output-shape. note that this is
# sub-optimal, because there can be different scales to the same output-shape.
if scale_factor is None:
scale_factor = 1.0 * np.array(output_shape) / np.array(input_shape)
# Dealing with missing output-shape. calculating according to scale-factor
if output_shape is None:
output_shape = np.uint(np.ceil(np.array(input_shape) * np.array(scale_factor)))
return scale_factor, output_shape
def contributions(self, in_length, out_length, scale, kernel, kernel_width, antialiasing):
# This function calculates a set of 'filters' and a set of field_of_view that will later on be applied
# such that each position from the field_of_view will be multiplied with a matching filter from the
# 'weights' based on the interpolation method and the distance of the sub-pixel location from the pixel centers
# around it. This is only done for one dimension of the image.
# When anti-aliasing is activated (default and only for downscaling) the receptive field is stretched to size of
# 1/sf. this means filtering is more 'low-pass filter'.
fixed_kernel = (lambda arg: scale * kernel(scale * arg)) if antialiasing else kernel
kernel_width *= 1.0 / scale if antialiasing else 1.0
# These are the coordinates of the output image
out_coordinates = np.arange(1, out_length + 1)
# since both scale-factor and output size can be provided simulatneously, perserving the center of the image requires shifting
# the output coordinates. the deviation is because out_length doesn't necesary equal in_length*scale.
# to keep the center we need to subtract half of this deivation so that we get equal margins for boths sides and center is preserved.
shifted_out_coordinates = out_coordinates - (out_length - in_length * scale) / 2
# These are the matching positions of the output-coordinates on the input image coordinates.
# Best explained by example: say we have 4 horizontal pixels for HR and we downscale by SF=2 and get 2 pixels:
# [1,2,3,4] -> [1,2]. Remember each pixel number is the middle of the pixel.
# The scaling is done between the distances and not pixel numbers (the right boundary of pixel 4 is transformed to
# the right boundary of pixel 2. pixel 1 in the small image matches the boundary between pixels 1 and 2 in the big
# one and not to pixel 2. This means the position is not just multiplication of the old pos by scale-factor).
# So if we measure distance from the left border, middle of pixel 1 is at distance d=0.5, border between 1 and 2 is
# at d=1, and so on (d = p - 0.5). we calculate (d_new = d_old / sf) which means:
# (p_new-0.5 = (p_old-0.5) / sf) -> p_new = p_old/sf + 0.5 * (1-1/sf)
match_coordinates = shifted_out_coordinates / scale + 0.5 * (1 - 1 / scale)
# This is the left boundary to start multiplying the filter from, it depends on the size of the filter
left_boundary = np.floor(match_coordinates - kernel_width / 2)
# Kernel width needs to be enlarged because when covering has sub-pixel borders, it must 'see' the pixel centers
# of the pixels it only covered a part from. So we add one pixel at each side to consider (weights can zeroize them)
expanded_kernel_width = np.ceil(kernel_width) + 2
# Determine a set of field_of_view for each each output position, these are the pixels in the input image
# that the pixel in the output image 'sees'. We get a matrix whos horizontal dim is the output pixels (big) and the
# vertical dim is the pixels it 'sees' (kernel_size + 2)
field_of_view = np.squeeze(
np.int16(np.expand_dims(left_boundary, axis=1) + np.arange(expanded_kernel_width) - 1)
)
# Assign weight to each pixel in the field of view. A matrix whos horizontal dim is the output pixels and the
# vertical dim is a list of weights matching to the pixel in the field of view (that are specified in
# 'field_of_view')
weights = fixed_kernel(1.0 * np.expand_dims(match_coordinates, axis=1) - field_of_view - 1)
# Normalize weights to sum up to 1. be careful from dividing by 0
sum_weights = np.sum(weights, axis=1)
sum_weights[sum_weights == 0] = 1.0
weights = 1.0 * weights / np.expand_dims(sum_weights, axis=1)
# We use this mirror structure as a trick for reflection padding at the boundaries
mirror = np.uint(np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))))
field_of_view = mirror[np.mod(field_of_view, mirror.shape[0])]
# Get rid of weights and pixel positions that are of zero weight
non_zero_out_pixels = np.nonzero(np.any(weights, axis=0))
weights = np.squeeze(weights[:, non_zero_out_pixels])
field_of_view = np.squeeze(field_of_view[:, non_zero_out_pixels])
# Final products are the relative positions and the matching weights, both are output_size X fixed_kernel_size
return weights, field_of_view
self.down_sample = Resizer(in_shape, 1 / scale_factor)
for param in self.parameters():
param.requires_grad = False
def forward(self, data, **kwargs):
return self.down_sample(data)
# Gaussian blurring operator
class GaussialBlurOperator(nn.Module):
def __init__(self, kernel_size, intensity):
super().__init__()
class Blurkernel(nn.Module):
def __init__(self, blur_type="gaussian", kernel_size=31, std=3.0):
super().__init__()
self.blur_type = blur_type
self.kernel_size = kernel_size
self.std = std
self.seq = nn.Sequential(
nn.ReflectionPad2d(self.kernel_size // 2),
nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3),
)
self.weights_init()
def forward(self, x):
return self.seq(x)
def weights_init(self):
if self.blur_type == "gaussian":
n = np.zeros((self.kernel_size, self.kernel_size))
n[self.kernel_size // 2, self.kernel_size // 2] = 1
k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
k = torch.from_numpy(k)
self.k = k
for name, f in self.named_parameters():
f.data.copy_(k)
def update_weights(self, k):
if not torch.is_tensor(k):
k = torch.from_numpy(k)
for name, f in self.named_parameters():
f.data.copy_(k)
def get_kernel(self):
return self.k
self.kernel_size = kernel_size
self.conv = Blurkernel(blur_type="gaussian", kernel_size=kernel_size, std=intensity)
self.kernel = self.conv.get_kernel()
self.conv.update_weights(self.kernel.type(torch.float32))
for param in self.parameters():
param.requires_grad = False
def forward(self, data, **kwargs):
return self.conv(data)
def transpose(self, data, **kwargs):
return data
def get_kernel(self):
return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
# assuming the forward process y = f(x) is polluted by Gaussian noise, use l2 norm
def RMSELoss(yhat, y):
return torch.sqrt(torch.sum((yhat - y) ** 2))
# set up source image
src = Image.open("sample.png")
# read image into [1,3,H,W]
src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2, 0, 1)[None]
# normalize image to [-1,1]
src = (src / 127.5) - 1.0
src = src.to("cuda")
# set up operator and measurement
# operator = SuperResolutionOperator(in_shape=src.shape, scale_factor=4).to("cuda")
operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda")
measurement = operator(src)
# set up scheduler
scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256")
scheduler.set_timesteps(1000)
# set up model
model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda")
save_image((src + 1.0) / 2.0, "dps_src.png")
save_image((measurement + 1.0) / 2.0, "dps_mea.png")
# finally, the pipeline
dpspipe = DPSPipeline(model, scheduler)
image = dpspipe(
measurement=measurement,
operator=operator,
loss_fn=RMSELoss,
zeta=1.0,
).images[0]
image.save("dps_generated_image.png")
|