Datasets:

ArXiv:
File size: 34,948 Bytes
fd5b113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# Copyright 2023 FABRIC authors and the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union

import torch
from diffuser.utils.torch_utils import randn_tensor
from packaging import version
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import (
    deprecate,
    logging,
    replace_example_docstring,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import DiffusionPipeline
        >>> import torch

        >>> model_id = "dreamlike-art/dreamlike-photoreal-2.0"
        >>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric")
        >>> pipe = pipe.to("cuda")
        >>> prompt = "a giant standing in a fantasy landscape best quality"
        >>> liked = []  # list of images for positive feedback
        >>> disliked = []  # list of images for negative feedback
        >>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0]
        ```
"""


class FabricCrossAttnProcessor:
    def __init__(self):
        self.attntion_probs = None

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        weights=None,
        lora_scale=1.0,
    ):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if isinstance(attn.processor, LoRAAttnProcessor):
            query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if isinstance(attn.processor, LoRAAttnProcessor):
            key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states)
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)

        if weights is not None:
            if weights.shape[0] != 1:
                weights = weights.repeat_interleave(attn.heads, dim=0)
            attention_probs = attention_probs * weights[:, None]
            attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True)

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        if isinstance(attn.processor, LoRAAttnProcessor):
            hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states)
        else:
            hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class FabricPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`EulerAncestralDiscreteScheduler`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )

            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            unet=unet,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def get_unet_hidden_states(self, z_all, t, prompt_embd):
        cached_hidden_states = []
        for module in self.unet.modules():
            if isinstance(module, BasicTransformerBlock):

                def new_forward(self, hidden_states, *args, **kwargs):
                    cached_hidden_states.append(hidden_states.clone().detach().cpu())
                    return self.old_forward(hidden_states, *args, **kwargs)

                module.attn1.old_forward = module.attn1.forward
                module.attn1.forward = new_forward.__get__(module.attn1)

        # run forward pass to cache hidden states, output can be discarded
        _ = self.unet(z_all, t, encoder_hidden_states=prompt_embd)

        # restore original forward pass
        for module in self.unet.modules():
            if isinstance(module, BasicTransformerBlock):
                module.attn1.forward = module.attn1.old_forward
                del module.attn1.old_forward

        return cached_hidden_states

    def unet_forward_with_cached_hidden_states(
        self,
        z_all,
        t,
        prompt_embd,
        cached_pos_hiddens: Optional[List[torch.Tensor]] = None,
        cached_neg_hiddens: Optional[List[torch.Tensor]] = None,
        pos_weights=(0.8, 0.8),
        neg_weights=(0.5, 0.5),
    ):
        if cached_pos_hiddens is None and cached_neg_hiddens is None:
            return self.unet(z_all, t, encoder_hidden_states=prompt_embd)

        local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
        local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
        for block, pos_weight, neg_weight in zip(
            self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks,
            local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1],
            local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1],
        ):
            for module in block.modules():
                if isinstance(module, BasicTransformerBlock):

                    def new_forward(
                        self,
                        hidden_states,
                        pos_weight=pos_weight,
                        neg_weight=neg_weight,
                        **kwargs,
                    ):
                        cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0)
                        batch_size, d_model = cond_hiddens.shape[:2]
                        device, dtype = hidden_states.device, hidden_states.dtype

                        weights = torch.ones(batch_size, d_model, device=device, dtype=dtype)
                        out_pos = self.old_forward(hidden_states)
                        out_neg = self.old_forward(hidden_states)

                        if cached_pos_hiddens is not None:
                            cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device)
                            cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1)
                            pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model)
                            pos_weights[:, d_model:] = pos_weight
                            attn_with_weights = FabricCrossAttnProcessor()
                            out_pos = attn_with_weights(
                                self,
                                cond_hiddens,
                                encoder_hidden_states=cond_pos_hs,
                                weights=pos_weights,
                            )
                        else:
                            out_pos = self.old_forward(cond_hiddens)

                        if cached_neg_hiddens is not None:
                            cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device)
                            uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1)
                            neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model)
                            neg_weights[:, d_model:] = neg_weight
                            attn_with_weights = FabricCrossAttnProcessor()
                            out_neg = attn_with_weights(
                                self,
                                uncond_hiddens,
                                encoder_hidden_states=uncond_neg_hs,
                                weights=neg_weights,
                            )
                        else:
                            out_neg = self.old_forward(uncond_hiddens)

                        out = torch.cat([out_pos, out_neg], dim=0)
                        return out

                    module.attn1.old_forward = module.attn1.forward
                    module.attn1.forward = new_forward.__get__(module.attn1)

        out = self.unet(z_all, t, encoder_hidden_states=prompt_embd)

        # restore original forward pass
        for module in self.unet.modules():
            if isinstance(module, BasicTransformerBlock):
                module.attn1.forward = module.attn1.old_forward
                del module.attn1.old_forward

        return out

    def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor:
        images_t = [self.image_to_tensor(img, dim, dtype) for img in images]
        images_t = torch.stack(images_t).to(device)
        latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator)

        return torch.cat([latents], dim=0)

    def check_inputs(
        self,
        prompt,
        negative_prompt=None,
        liked=None,
        disliked=None,
        height=None,
        width=None,
    ):
        if prompt is None:
            raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.")
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and (
            not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
        ):
            raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")

        if liked is not None and not isinstance(liked, list):
            raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}")

        if disliked is not None and not isinstance(disliked, list):
            raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}")

        if height is not None and not isinstance(height, int):
            raise ValueError(f"`height` has to be of type `int` but is {type(height)}")

        if width is not None and not isinstance(width, int):
            raise ValueError(f"`width` has to be of type `int` but is {type(width)}")

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Optional[Union[str, List[str]]] = "",
        negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality",
        liked: Optional[Union[List[str], List[Image.Image]]] = [],
        disliked: Optional[Union[List[str], List[Image.Image]]] = [],
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        height: int = 512,
        width: int = 512,
        return_dict: bool = True,
        num_images: int = 4,
        guidance_scale: float = 7.0,
        num_inference_steps: int = 20,
        output_type: Optional[str] = "pil",
        feedback_start_ratio: float = 0.33,
        feedback_end_ratio: float = 0.66,
        min_weight: float = 0.05,
        max_weight: float = 0.8,
        neg_scale: float = 0.5,
        pos_bottleneck_scale: float = 1.0,
        neg_bottleneck_scale: float = 1.0,
        latents: Optional[torch.FloatTensor] = None,
    ):
        r"""
        The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The
        feedback can be given as a list of liked and disliked images.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            liked (`List[Image.Image]` or `List[str]`, *optional*):
                Encourages images with liked features.
            disliked (`List[Image.Image]` or `List[str]`, *optional*):
                Discourages images with disliked features.
            generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to
                make generation deterministic.
            height (`int`, *optional*, defaults to 512):
                Height of the generated image.
            width (`int`, *optional*, defaults to 512):
                Width of the generated image.
            num_images (`int`, *optional*, defaults to 4):
                The number of images to generate per prompt.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            num_inference_steps (`int`, *optional*, defaults to 20):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            feedback_start_ratio (`float`, *optional*, defaults to `.33`):
                Start point for providing feedback (between 0 and 1).
            feedback_end_ratio (`float`, *optional*, defaults to `.66`):
                End point for providing feedback (between 0 and 1).
            min_weight (`float`, *optional*, defaults to `.05`):
                Minimum weight for feedback.
            max_weight (`float`, *optional*, defults tp `1.0`):
                Maximum weight for feedback.
            neg_scale (`float`, *optional*, defaults to `.5`):
                Scale factor for negative feedback.

        Examples:

        Returns:
            [`~pipelines.fabric.FabricPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.

        """

        self.check_inputs(prompt, negative_prompt, liked, disliked)

        device = self._execution_device
        dtype = self.unet.dtype

        if isinstance(prompt, str) and prompt is not None:
            batch_size = 1
        elif isinstance(prompt, list) and prompt is not None:
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if isinstance(negative_prompt, str):
            negative_prompt = negative_prompt
        elif isinstance(negative_prompt, list):
            negative_prompt = negative_prompt
        else:
            assert len(negative_prompt) == batch_size

        shape = (
            batch_size * num_images,
            self.unet.config.in_channels,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        latent_noise = randn_tensor(
            shape,
            device=device,
            dtype=dtype,
            generator=generator,
        )

        positive_latents = (
            self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator)
            if liked and len(liked) > 0
            else torch.tensor(
                [],
                device=device,
                dtype=dtype,
            )
        )
        negative_latents = (
            self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator)
            if disliked and len(disliked) > 0
            else torch.tensor(
                [],
                device=device,
                dtype=dtype,
            )
        )

        do_classifier_free_guidance = guidance_scale > 0.1

        (prompt_neg_embs, prompt_pos_embs) = self._encode_prompt(
            prompt,
            device,
            num_images,
            do_classifier_free_guidance,
            negative_prompt,
        ).split([num_images * batch_size, num_images * batch_size])

        batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0)

        null_tokens = self.tokenizer(
            [""],
            return_tensors="pt",
            max_length=self.tokenizer.model_max_length,
            padding="max_length",
            truncation=True,
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = null_tokens.attention_mask.to(device)
        else:
            attention_mask = None

        null_prompt_emb = self.text_encoder(
            input_ids=null_tokens.input_ids.to(device),
            attention_mask=attention_mask,
        ).last_hidden_state

        null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype)

        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        latent_noise = latent_noise * self.scheduler.init_noise_sigma

        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        ref_start_idx = round(len(timesteps) * feedback_start_ratio)
        ref_end_idx = round(len(timesteps) * feedback_end_ratio)

        with self.progress_bar(total=num_inference_steps) as pbar:
            for i, t in enumerate(timesteps):
                sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0
                if hasattr(self.scheduler, "sigmas"):
                    sigma = self.scheduler.sigmas[i]

                alpha_hat = 1 / (sigma**2 + 1)

                z_single = self.scheduler.scale_model_input(latent_noise, t)
                z_all = torch.cat([z_single] * 2, dim=0)
                z_ref = torch.cat([positive_latents, negative_latents], dim=0)

                if i >= ref_start_idx and i <= ref_end_idx:
                    weight_factor = max_weight
                else:
                    weight_factor = min_weight

                pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale)
                neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale)

                if z_ref.size(0) > 0 and weight_factor > 0:
                    noise = torch.randn_like(z_ref)
                    if isinstance(self.scheduler, EulerAncestralDiscreteScheduler):
                        z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype)
                    else:
                        z_ref_noised = self.scheduler.add_noise(z_ref, noise, t)

                    ref_prompt_embd = torch.cat(
                        [null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0
                    )
                    cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd)

                    n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0]
                    cached_pos_hs, cached_neg_hs = [], []
                    for hs in cached_hidden_states:
                        cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0)
                        cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1)
                        cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1)
                        cached_pos_hs.append(cached_pos)
                        cached_neg_hs.append(cached_neg)

                    if n_pos == 0:
                        cached_pos_hs = None
                    if n_neg == 0:
                        cached_neg_hs = None
                else:
                    cached_pos_hs, cached_neg_hs = None, None
                unet_out = self.unet_forward_with_cached_hidden_states(
                    z_all,
                    t,
                    prompt_embd=batched_prompt_embd,
                    cached_pos_hiddens=cached_pos_hs,
                    cached_neg_hiddens=cached_neg_hs,
                    pos_weights=pos_ws,
                    neg_weights=neg_ws,
                )[0]

                noise_cond, noise_uncond = unet_out.chunk(2)
                guidance = noise_cond - noise_uncond
                noise_pred = noise_uncond + guidance_scale * guidance
                latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0]

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    pbar.update()

        y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0]
        imgs = self.image_processor.postprocess(
            y,
            output_type=output_type,
        )

        if not return_dict:
            return imgs

        return StableDiffusionPipelineOutput(imgs, False)

    def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype):
        """
        Convert latent PIL image to a torch tensor for further processing.
        """
        if isinstance(image, str):
            image = Image.open(image)
        if not image.mode == "RGB":
            image = image.convert("RGB")
        image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0]
        return image.type(dtype)