Datasets:

ArXiv:
File size: 55,807 Bytes
b05cfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    PIL_INTERPOLATION,
    is_accelerate_available,
    is_accelerate_version,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import numpy as np
        >>> import torch
        >>> from PIL import Image
        >>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline

        >>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
        >>> from diffusers import ControlNetModel, UniPCMultistepScheduler
        >>> from diffusers.utils import load_image

        >>> def ade_palette():
                return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
                        [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
                        [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
                        [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
                        [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
                        [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
                        [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
                        [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
                        [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
                        [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
                        [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
                        [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
                        [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
                        [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
                        [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
                        [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
                        [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
                        [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
                        [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
                        [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
                        [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
                        [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
                        [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
                        [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
                        [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
                        [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
                        [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
                        [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
                        [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
                        [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
                        [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
                        [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
                        [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
                        [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
                        [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
                        [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
                        [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
                        [102, 255, 0], [92, 0, 255]]

        >>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        >>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

        >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)

        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
                "runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
            )

        >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        >>> pipe.enable_xformers_memory_efficient_attention()
        >>> pipe.enable_model_cpu_offload()

        >>> def image_to_seg(image):
                pixel_values = image_processor(image, return_tensors="pt").pixel_values
                with torch.no_grad():
                    outputs = image_segmentor(pixel_values)
                seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
                color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)  # height, width, 3
                palette = np.array(ade_palette())
                for label, color in enumerate(palette):
                    color_seg[seg == label, :] = color
                color_seg = color_seg.astype(np.uint8)
                seg_image = Image.fromarray(color_seg)
                return seg_image

        >>> image = load_image(
                "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
            )

        >>> mask_image = load_image(
                "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
            )

        >>> controlnet_conditioning_image = image_to_seg(image)

        >>> image = pipe(
                "Face of a yellow cat, high resolution, sitting on a park bench",
                image,
                mask_image,
                controlnet_conditioning_image,
                num_inference_steps=20,
            ).images[0]

        >>> image.save("out.png")
        ```
"""


def prepare_image(image):
    if isinstance(image, torch.Tensor):
        # Batch single image
        if image.ndim == 3:
            image = image.unsqueeze(0)

        image = image.to(dtype=torch.float32)
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]

        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

    return image


def prepare_mask_image(mask_image):
    if isinstance(mask_image, torch.Tensor):
        if mask_image.ndim == 2:
            # Batch and add channel dim for single mask
            mask_image = mask_image.unsqueeze(0).unsqueeze(0)
        elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
            # Single mask, the 0'th dimension is considered to be
            # the existing batch size of 1
            mask_image = mask_image.unsqueeze(0)
        elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
            # Batch of mask, the 0'th dimension is considered to be
            # the batching dimension
            mask_image = mask_image.unsqueeze(1)

        # Binarize mask
        mask_image[mask_image < 0.5] = 0
        mask_image[mask_image >= 0.5] = 1
    else:
        # preprocess mask
        if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
            mask_image = [mask_image]

        if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
            mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
            mask_image = mask_image.astype(np.float32) / 255.0
        elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
            mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)

        mask_image[mask_image < 0.5] = 0
        mask_image[mask_image >= 0.5] = 1
        mask_image = torch.from_numpy(mask_image)

    return mask_image


def prepare_controlnet_conditioning_image(
    controlnet_conditioning_image,
    width,
    height,
    batch_size,
    num_images_per_prompt,
    device,
    dtype,
    do_classifier_free_guidance,
):
    if not isinstance(controlnet_conditioning_image, torch.Tensor):
        if isinstance(controlnet_conditioning_image, PIL.Image.Image):
            controlnet_conditioning_image = [controlnet_conditioning_image]

        if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
            controlnet_conditioning_image = [
                np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
                for i in controlnet_conditioning_image
            ]
            controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
            controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
            controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
            controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
        elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
            controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)

    image_batch_size = controlnet_conditioning_image.shape[0]

    if image_batch_size == 1:
        repeat_by = batch_size
    else:
        # image batch size is the same as prompt batch size
        repeat_by = num_images_per_prompt

    controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)

    controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)

    if do_classifier_free_guidance:
        controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)

    return controlnet_conditioning_image


class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
    """
    Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
    """

    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding.

        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
        steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        Note that offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
            cpu_offload(cpu_offloaded_model, device)

        if self.safety_checker is not None:
            cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        if self.safety_checker is not None:
            # the safety checker can offload the vae again
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)

        # control net hook has be manually offloaded as it alternates with unet
        cpu_offload_with_hook(self.controlnet, device)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)

        if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
            raise TypeError(
                "image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
            )

        if image_is_pil:
            image_batch_size = 1
        elif image_is_tensor:
            image_batch_size = image.shape[0]
        elif image_is_pil_list:
            image_batch_size = len(image)
        elif image_is_tensor_list:
            image_batch_size = len(image)
        else:
            raise ValueError("controlnet condition image is not valid")

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]
        else:
            raise ValueError("prompt or prompt_embeds are not valid")

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def check_inputs(
        self,
        prompt,
        image,
        mask_image,
        controlnet_conditioning_image,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        controlnet_conditioning_scale=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # check controlnet condition image
        if isinstance(self.controlnet, ControlNetModel):
            self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
        elif isinstance(self.controlnet, MultiControlNetModel):
            if not isinstance(controlnet_conditioning_image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")
            if len(controlnet_conditioning_image) != len(self.controlnet.nets):
                raise ValueError(
                    "For multiple controlnets: `image` must have the same length as the number of controlnets."
                )
            for image_ in controlnet_conditioning_image:
                self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if isinstance(self.controlnet, ControlNetModel):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
            raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")

        if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image):
            raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image")

        if isinstance(image, torch.Tensor):
            if image.ndim != 3 and image.ndim != 4:
                raise ValueError("`image` must have 3 or 4 dimensions")

            if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4:
                raise ValueError("`mask_image` must have 2, 3, or 4 dimensions")

            if image.ndim == 3:
                image_batch_size = 1
                image_channels, image_height, image_width = image.shape
            elif image.ndim == 4:
                image_batch_size, image_channels, image_height, image_width = image.shape
            else:
                assert False

            if mask_image.ndim == 2:
                mask_image_batch_size = 1
                mask_image_channels = 1
                mask_image_height, mask_image_width = mask_image.shape
            elif mask_image.ndim == 3:
                mask_image_channels = 1
                mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape
            elif mask_image.ndim == 4:
                mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape

            if image_channels != 3:
                raise ValueError("`image` must have 3 channels")

            if mask_image_channels != 1:
                raise ValueError("`mask_image` must have 1 channel")

            if image_batch_size != mask_image_batch_size:
                raise ValueError("`image` and `mask_image` mush have the same batch sizes")

            if image_height != mask_image_height or image_width != mask_image_width:
                raise ValueError("`image` and `mask_image` must have the same height and width dimensions")

            if image.min() < -1 or image.max() > 1:
                raise ValueError("`image` should be in range [-1, 1]")

            if mask_image.min() < 0 or mask_image.max() > 1:
                raise ValueError("`mask_image` should be in range [0, 1]")
        else:
            mask_image_channels = 1
            image_channels = 3

        single_image_latent_channels = self.vae.config.latent_channels

        total_latent_channels = single_image_latent_channels * 2 + mask_image_channels

        if total_latent_channels != self.unet.config.in_channels:
            raise ValueError(
                f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
                f" non inpainting latent channels: {single_image_latent_channels},"
                f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}."
                f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs."
            )

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma

        return latents

    def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
        mask_image = mask_image.to(device=device, dtype=dtype)

        # duplicate mask for each generation per prompt, using mps friendly method
        if mask_image.shape[0] < batch_size:
            if not batch_size % mask_image.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)

        mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image

        mask_image_latents = mask_image

        return mask_image_latents

    def prepare_masked_image_latents(
        self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        masked_image = masked_image.to(device=device, dtype=dtype)

        # encode the mask image into latents space so we can concatenate it to the latents
        if isinstance(generator, list):
            masked_image_latents = [
                self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
                for i in range(batch_size)
            ]
            masked_image_latents = torch.cat(masked_image_latents, dim=0)
        else:
            masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
        masked_image_latents = self.vae.config.scaling_factor * masked_image_latents

        # duplicate masked_image_latents for each generation per prompt, using mps friendly method
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return masked_image_latents

    def _default_height_width(self, height, width, image):
        if isinstance(image, list):
            image = image[0]

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[3]

            height = (height // 8) * 8  # round down to nearest multiple of 8

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[2]

            width = (width // 8) * 8  # round down to nearest multiple of 8

        return height, width

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: Union[torch.Tensor, PIL.Image.Image] = None,
        mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
        controlnet_conditioning_image: Union[
            torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
        ] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            image (`torch.Tensor` or `PIL.Image.Image`):
                `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
                be masked out with `mask_image` and repainted according to `prompt`.
            mask_image (`torch.Tensor` or `PIL.Image.Image`):
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
                repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
                to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
                instead of 3, so the expected shape would be `(B, H, W, 1)`.
            controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
                The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
                the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
                also be accepted as an image. The control image is automatically resized to fit the output image.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original unet.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height, width = self._default_height_width(height, width, controlnet_conditioning_image)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            image,
            mask_image,
            controlnet_conditioning_image,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            controlnet_conditioning_scale,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare mask, image, and controlnet_conditioning_image
        image = prepare_image(image)

        mask_image = prepare_mask_image(mask_image)

        # condition image(s)
        if isinstance(self.controlnet, ControlNetModel):
            controlnet_conditioning_image = prepare_controlnet_conditioning_image(
                controlnet_conditioning_image=controlnet_conditioning_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=self.controlnet.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance,
            )
        elif isinstance(self.controlnet, MultiControlNetModel):
            controlnet_conditioning_images = []

            for image_ in controlnet_conditioning_image:
                image_ = prepare_controlnet_conditioning_image(
                    controlnet_conditioning_image=image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=self.controlnet.dtype,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                )
                controlnet_conditioning_images.append(image_)

            controlnet_conditioning_image = controlnet_conditioning_images
        else:
            assert False

        masked_image = image * (mask_image < 0.5)

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        mask_image_latents = self.prepare_mask_latents(
            mask_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            do_classifier_free_guidance,
        )

        masked_image_latents = self.prepare_masked_image_latents(
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            do_classifier_free_guidance,
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                non_inpainting_latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )

                non_inpainting_latent_model_input = self.scheduler.scale_model_input(
                    non_inpainting_latent_model_input, t
                )

                inpainting_latent_model_input = torch.cat(
                    [non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1
                )

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    non_inpainting_latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    controlnet_cond=controlnet_conditioning_image,
                    conditioning_scale=controlnet_conditioning_scale,
                    return_dict=False,
                )

                # predict the noise residual
                noise_pred = self.unet(
                    inpainting_latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)