Datasets:

ArXiv:
Diffusers Bot
Upload folder using huggingface_hub
fde9fca verified
raw
history blame
44.8 kB
import math
import numbers
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.image_processor import PipelineImageInput
from diffusers.models import AsymmetricAutoencoderKL, ImageProjection
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import (
StableDiffusionInpaintPipeline,
retrieve_timesteps,
)
from diffusers.utils import deprecate
class RASGAttnProcessor:
def __init__(self, mask, token_idx, scale_factor):
self.attention_scores = None # Stores the last output of the similarity matrix here. Each layer will get its own RASGAttnProcessor assigned
self.mask = mask
self.token_idx = token_idx
self.scale_factor = scale_factor
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 if the image is 512x512
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Same as the default AttnProcessor up untill the part where similarity matrix gets saved
downscale_factor = self.mask_resoltuion // hidden_states.shape[1]
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
# Automatically recognize the resolution and save the attention similarity values
# We need to use the values before the softmax function, hence the rewritten get_attention_scores function.
if downscale_factor == self.scale_factor**2:
self.attention_scores = get_attention_scores(attn, query, key, attention_mask)
attention_probs = self.attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask) # Original code
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class PAIntAAttnProcessor:
def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors):
self.transformer_block = transformer_block # Stores the parent transformer block.
self.mask = mask
self.scale_factors = scale_factors
self.do_classifier_free_guidance = do_classifier_free_guidance
self.token_idx = token_idx
self.shape = mask.shape[2:]
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64
self.default_processor = AttnProcessor()
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Automatically recognize the resolution of the current attention layer and resize the masks accordingly
downscale_factor = self.mask_resoltuion // hidden_states.shape[1]
mask = None
for factor in self.scale_factors:
if downscale_factor == factor**2:
shape = (self.shape[0] // factor, self.shape[1] // factor)
mask = F.interpolate(self.mask, shape, mode="bicubic") # B, 1, H, W
break
if mask is None:
return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale)
# STARTS HERE
residual = hidden_states
# Save the input hidden_states for later use
input_hidden_states = hidden_states
# ================================================== #
# =============== SELF ATTENTION 1 ================= #
# ================================================== #
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
# self_attention_probs = attn.get_attention_scores(query, key, attention_mask) # We can't use post-softmax attention scores in this case
self_attention_scores = get_attention_scores(
attn, query, key, attention_mask
) # The custom function returns pre-softmax probabilities
self_attention_probs = self_attention_scores.softmax(
dim=-1
) # Manually compute the probabilities here, the scores will be reused in the second part of PAIntA
self_attention_probs = self_attention_probs.to(query.dtype)
hidden_states = torch.bmm(self_attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# x = x + self.attn1(self.norm1(x))
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection: # So many residuals everywhere
hidden_states = hidden_states + residual
self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor
# ================================================== #
# ============ BasicTransformerBlock =============== #
# ================================================== #
# We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here
# The other option would've been modifying the BasicTransformerBlock and adding this functionality here.
# I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead.
# The SelfAttention block recieves the normalized latents from the BasicTransformerBlock,
# But the residual of the output is the non-normalized version.
# Therefore we unnormalize the input hidden state here
unnormalized_input_hidden_states = (
input_hidden_states + self.transformer_block.norm1.bias
) * self.transformer_block.norm1.weight
# TODO: return if neccessary
# if self.use_ada_layer_norm_zero:
# attn_output = gate_msa.unsqueeze(1) * attn_output
# elif self.use_ada_layer_norm_single:
# attn_output = gate_msa * attn_output
transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states
if transformer_hidden_states.ndim == 4:
transformer_hidden_states = transformer_hidden_states.squeeze(1)
# TODO: return if neccessary
# 2.5 GLIGEN Control
# if gligen_kwargs is not None:
# transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"])
# NOTE: we experimented with using GLIGEN and HDPainter together, the results were not that great
# 3. Cross-Attention
if self.transformer_block.use_ada_layer_norm:
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, timestep)
raise NotImplementedError()
elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm:
transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states)
elif self.transformer_block.use_ada_layer_norm_single:
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
transformer_norm_hidden_states = transformer_hidden_states
elif self.transformer_block.use_ada_layer_norm_continuous:
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, added_cond_kwargs["pooled_text_emb"])
raise NotImplementedError()
else:
raise ValueError("Incorrect norm")
if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False:
transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states)
# ================================================== #
# ================= CROSS ATTENTION ================ #
# ================================================== #
# We do an initial pass of the CrossAttention up to obtaining the similarity matrix here.
# The similarity matrix is used to obtain scaling coefficients for the attention matrix of the self attention
# We reuse the previously computed self-attention matrix, and only repeat the steps after the softmax
cross_attention_input_hidden_states = (
transformer_norm_hidden_states # Renaming the variable for the sake of readability
)
# TODO: check if classifier_free_guidance is being used before splitting here
if self.do_classifier_free_guidance:
# Our scaling coefficients depend only on the conditional part, so we split the inputs
(
_cross_attention_input_hidden_states_unconditional,
cross_attention_input_hidden_states_conditional,
) = cross_attention_input_hidden_states.chunk(2)
# Same split for the encoder_hidden_states i.e. the tokens
# Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining.
_encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(
2
)
else:
cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states
encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2)
# Rename the variables for the sake of readability
# The part below is the beginning of the __call__ function of the following CrossAttention layer
cross_attention_hidden_states = cross_attention_input_hidden_states_conditional
cross_attention_encoder_hidden_states = encoder_hidden_states_conditional
attn2 = self.transformer_block.attn2
if attn2.spatial_norm is not None:
cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb)
input_ndim = cross_attention_hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = cross_attention_hidden_states.shape
cross_attention_hidden_states = cross_attention_hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
(
batch_size,
sequence_length,
_,
) = cross_attention_hidden_states.shape # It is definitely a cross attention, so no need for an if block
# TODO: change the attention_mask here
attention_mask = attn2.prepare_attention_mask(
None, sequence_length, batch_size
) # I assume the attention mask is the same...
if attn2.group_norm is not None:
cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose(
1, 2
)
query2 = attn2.to_q(cross_attention_hidden_states)
if attn2.norm_cross:
cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states(
cross_attention_encoder_hidden_states
)
key2 = attn2.to_k(cross_attention_encoder_hidden_states)
query2 = attn2.head_to_batch_dim(query2)
key2 = attn2.head_to_batch_dim(key2)
cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask)
# CrossAttention ends here, the remaining part is not used
# ================================================== #
# ================ SELF ATTENTION 2 ================ #
# ================================================== #
# DEJA VU!
mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype)
m = mask.to(self_attention_output_hidden_states.device)
# m = rearrange(m, 'b c h w -> b (h w) c').contiguous()
m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous() # B HW 1
m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m)
# # Compute scaling coefficients for the similarity matrix
# # Select the cross attention values for the correct tokens only!
# cross_attention_probs = cross_attention_probs.mean(dim = 0)
# cross_attention_probs = cross_attention_probs[:, self.token_idx].sum(dim=1)
# cross_attention_probs = cross_attention_probs.reshape(shape)
# gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(self_attention_output_hidden_states.device)
# cross_attention_probs = gaussian_smoothing(cross_attention_probs.unsqueeze(0))[0] # optional smoothing
# cross_attention_probs = cross_attention_probs.reshape(-1)
# cross_attention_probs = ((cross_attention_probs - torch.median(cross_attention_probs.ravel())) / torch.max(cross_attention_probs.ravel())).clip(0, 1)
# c = (1 - m) * cross_attention_probs.reshape(1, 1, -1) + m # PAIntA scaling coefficients
# Compute scaling coefficients for the similarity matrix
# Select the cross attention values for the correct tokens only!
batch_size, dims, channels = cross_attention_probs.shape
batch_size = batch_size // attn.heads
cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels)) # B, D, HW, T
cross_attention_probs = cross_attention_probs.mean(dim=1) # B, HW, T
cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1) # B, HW
cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape) # , B, H, W
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(
self_attention_output_hidden_states.device
)
cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0] # optional smoothing B, H, W
# Median normalization
cross_attention_probs = cross_attention_probs.reshape(batch_size, -1) # B, HW
cross_attention_probs = (
cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values
) / cross_attention_probs.max(dim=-1, keepdim=True).values
cross_attention_probs = cross_attention_probs.clip(0, 1)
c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m
c = c.repeat_interleave(attn.heads, 0) # BD, HW
if self.do_classifier_free_guidance:
c = torch.cat([c, c]) # 2BD, HW
# Rescaling the original self-attention matrix
self_attention_scores_rescaled = self_attention_scores * c
self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1)
# Continuing the self attention normally using the new matrix
hidden_states = torch.bmm(self_attention_probs_rescaled, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + input_hidden_states
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
def get_tokenized_prompt(self, prompt):
out = self.tokenizer(prompt)
return [self.tokenizer.decode(x) for x in out["input_ids"]]
def init_attn_processors(
self,
mask,
token_idx,
use_painta=True,
use_rasg=True,
painta_scale_factors=[2, 4], # 64x64 -> [16x16, 32x32]
rasg_scale_factor=4, # 64x64 -> 16x16
self_attention_layer_name="attn1",
cross_attention_layer_name="attn2",
list_of_painta_layer_names=None,
list_of_rasg_layer_names=None,
):
default_processor = AttnProcessor()
width, height = mask.shape[-2:]
width, height = width // self.vae_scale_factor, height // self.vae_scale_factor
painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors]
rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor
attn_processors = {}
for x in self.unet.attn_processors:
if (list_of_painta_layer_names is None and self_attention_layer_name in x) or (
list_of_painta_layer_names is not None and x in list_of_painta_layer_names
):
if use_painta:
transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", ""))
attn_processors[x] = PAIntAAttnProcessor(
transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors
)
else:
attn_processors[x] = default_processor
elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or (
list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names
):
if use_rasg:
attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor)
else:
attn_processors[x] = default_processor
self.unet.set_attn_processor(attn_processors)
# import json
# with open('/home/hayk.manukyan/repos/diffusers/debug.txt', 'a') as f:
# json.dump({x:str(y) for x,y in self.unet.attn_processors.items()}, f, indent=4)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: torch.Tensor = None,
height: Optional[int] = None,
width: Optional[int] = None,
padding_mask_crop: Optional[int] = None,
strength: float = 1.0,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 7.5,
positive_prompt: Optional[str] = "",
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.01,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: int = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
use_painta=True,
use_rasg=True,
self_attention_layer_name=".attn1",
cross_attention_layer_name=".attn2",
painta_scale_factors=[2, 4], # 16 x 16 and 32 x 32
rasg_scale_factor=4, # 16x16 by default
list_of_painta_layer_names=None,
list_of_rasg_layer_names=None,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
#
prompt_no_positives = prompt
if isinstance(prompt, list):
prompt = [x + positive_prompt for x in prompt]
else:
prompt = prompt + positive_prompt
# 1. Check inputs
self.check_inputs(
prompt,
image,
mask_image,
height,
width,
strength,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
padding_mask_crop,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# assert batch_size == 1, "Does not work with batch size > 1 currently"
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None:
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
image_embeds, negative_image_embeds = self.encode_image(
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
# 4. set timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
# 5. Preprocess mask and image
if padding_mask_crop is not None:
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32)
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
return_noise=True,
return_image_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs
# 7. Prepare mask latent variables
mask_condition = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
if masked_image_latents is None:
masked_image = init_image * (mask_condition < 0.5)
else:
masked_image = masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask_condition,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
)
# 7.5 Setting up HD-Painter
# Get the indices of the tokens to be modified by both RASG and PAIntA
token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [
self.get_tokenized_prompt(prompt).index("<|endoftext|>")
]
# Setting up the attention processors
self.init_attn_processors(
mask_condition,
token_idx,
use_painta,
use_rasg,
painta_scale_factors=painta_scale_factors,
rasg_scale_factor=rasg_scale_factor,
self_attention_layer_name=self_attention_layer_name,
cross_attention_layer_name=cross_attention_layer_name,
list_of_painta_layer_names=list_of_painta_layer_names,
list_of_rasg_layer_names=list_of_rasg_layer_names,
)
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
elif num_channels_unet != 4:
raise ValueError(
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
)
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
if use_rasg:
extra_step_kwargs["generator"] = None
# 9.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
# 9.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 10. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
painta_active = True
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if t < 500 and painta_active:
self.init_attn_processors(
mask_condition,
token_idx,
False,
use_rasg,
painta_scale_factors=painta_scale_factors,
rasg_scale_factor=rasg_scale_factor,
self_attention_layer_name=self_attention_layer_name,
cross_attention_layer_name=cross_attention_layer_name,
list_of_painta_layer_names=list_of_painta_layer_names,
list_of_rasg_layer_names=list_of_rasg_layer_names,
)
painta_active = False
with torch.enable_grad():
self.unet.zero_grad()
latents = latents.detach()
latents.requires_grad = True
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if num_channels_unet == 9:
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
self.scheduler.latents = latents
self.encoder_hidden_states = prompt_embeds
for attn_processor in self.unet.attn_processors.values():
attn_processor.encoder_hidden_states = prompt_embeds
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if use_rasg:
# Perform RASG
_, _, height, width = mask_condition.shape # 512 x 512
scale_factor = self.vae_scale_factor * rasg_scale_factor # 8 * 4 = 32
# TODO: Fix for > 1 batch_size
rasg_mask = F.interpolate(
mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic"
)[0, 0] # mode is nearest by default, B, H, W
# Aggregate the saved attention maps
attn_map = []
for processor in self.unet.attn_processors.values():
if hasattr(processor, "attention_scores") and processor.attention_scores is not None:
if self.do_classifier_free_guidance:
attn_map.append(processor.attention_scores.chunk(2)[1]) # (B/2) x H, 256, 77
else:
attn_map.append(processor.attention_scores) # B x H, 256, 77 ?
attn_map = (
torch.cat(attn_map)
.mean(0)
.permute(1, 0)
.reshape((-1, height // scale_factor, width // scale_factor))
) # 77, 16, 16
# Compute the attention score
attn_score = -sum(
[
F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device))
for x in attn_map[token_idx]
]
)
# Backward the score and compute the gradients
attn_score.backward()
# Normalzie the gradients and compute the noise component
variance_noise = latents.grad.detach()
# print("VARIANCE SHAPE", variance_noise.shape)
variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True)
variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True)
else:
variance_noise = None
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise
)[0]
if num_channels_unet == 4:
init_latents_proper = image_latents
if self.do_classifier_free_guidance:
init_mask, _ = mask.chunk(2)
else:
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
mask = callback_outputs.pop("mask", mask)
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
condition_kwargs = {}
if isinstance(self.vae, AsymmetricAutoencoderKL):
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
init_image_condition = init_image.clone()
init_image = self._encode_vae_image(init_image, generator=generator)
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
image = self.vae.decode(
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if padding_mask_crop is not None:
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
# ============= Utility Functions ============== #
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer("weight", kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim))
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same")
def get_attention_scores(
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
) -> torch.Tensor:
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
if self.upcast_attention:
query = query.float()
key = key.float()
if attention_mask is None:
baddbmm_input = torch.empty(
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
)
beta = 0
else:
baddbmm_input = attention_mask
beta = 1
attention_scores = torch.baddbmm(
baddbmm_input,
query,
key.transpose(-1, -2),
beta=beta,
alpha=self.scale,
)
del baddbmm_input
if self.upcast_softmax:
attention_scores = attention_scores.float()
return attention_scores