|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
PIL_INTERPOLATION, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import numpy as np |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline |
|
|
|
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation |
|
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler |
|
>>> from diffusers.utils import load_image |
|
|
|
>>> def ade_palette(): |
|
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], |
|
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], |
|
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], |
|
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], |
|
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], |
|
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], |
|
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], |
|
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], |
|
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], |
|
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], |
|
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], |
|
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], |
|
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], |
|
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], |
|
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], |
|
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], |
|
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], |
|
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], |
|
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], |
|
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], |
|
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], |
|
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], |
|
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], |
|
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], |
|
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], |
|
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], |
|
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], |
|
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], |
|
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], |
|
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], |
|
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], |
|
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], |
|
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], |
|
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], |
|
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], |
|
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], |
|
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], |
|
[102, 255, 0], [92, 0, 255]] |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") |
|
>>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") |
|
|
|
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16) |
|
|
|
>>> pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
>>> pipe.enable_xformers_memory_efficient_attention() |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> def image_to_seg(image): |
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values |
|
with torch.no_grad(): |
|
outputs = image_segmentor(pixel_values) |
|
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] |
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 |
|
palette = np.array(ade_palette()) |
|
for label, color in enumerate(palette): |
|
color_seg[seg == label, :] = color |
|
color_seg = color_seg.astype(np.uint8) |
|
seg_image = Image.fromarray(color_seg) |
|
return seg_image |
|
|
|
>>> image = load_image( |
|
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
|
|
>>> mask_image = load_image( |
|
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
|
|
>>> controlnet_conditioning_image = image_to_seg(image) |
|
|
|
>>> image = pipe( |
|
"Face of a yellow cat, high resolution, sitting on a park bench", |
|
image, |
|
mask_image, |
|
controlnet_conditioning_image, |
|
num_inference_steps=20, |
|
).images[0] |
|
|
|
>>> image.save("out.png") |
|
``` |
|
""" |
|
|
|
|
|
def prepare_image(image): |
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.ndim == 3: |
|
image = image.unsqueeze(0) |
|
|
|
image = image.to(dtype=torch.float32) |
|
else: |
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)): |
|
image = [image] |
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
|
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
return image |
|
|
|
|
|
def prepare_mask_image(mask_image): |
|
if isinstance(mask_image, torch.Tensor): |
|
if mask_image.ndim == 2: |
|
|
|
mask_image = mask_image.unsqueeze(0).unsqueeze(0) |
|
elif mask_image.ndim == 3 and mask_image.shape[0] == 1: |
|
|
|
|
|
mask_image = mask_image.unsqueeze(0) |
|
elif mask_image.ndim == 3 and mask_image.shape[0] != 1: |
|
|
|
|
|
mask_image = mask_image.unsqueeze(1) |
|
|
|
|
|
mask_image[mask_image < 0.5] = 0 |
|
mask_image[mask_image >= 0.5] = 1 |
|
else: |
|
|
|
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)): |
|
mask_image = [mask_image] |
|
|
|
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image): |
|
mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0) |
|
mask_image = mask_image.astype(np.float32) / 255.0 |
|
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray): |
|
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) |
|
|
|
mask_image[mask_image < 0.5] = 0 |
|
mask_image[mask_image >= 0.5] = 1 |
|
mask_image = torch.from_numpy(mask_image) |
|
|
|
return mask_image |
|
|
|
|
|
def prepare_controlnet_conditioning_image( |
|
controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype |
|
): |
|
if not isinstance(controlnet_conditioning_image, torch.Tensor): |
|
if isinstance(controlnet_conditioning_image, PIL.Image.Image): |
|
controlnet_conditioning_image = [controlnet_conditioning_image] |
|
|
|
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image): |
|
controlnet_conditioning_image = [ |
|
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] |
|
for i in controlnet_conditioning_image |
|
] |
|
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0) |
|
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0 |
|
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2) |
|
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image) |
|
elif isinstance(controlnet_conditioning_image[0], torch.Tensor): |
|
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0) |
|
|
|
image_batch_size = controlnet_conditioning_image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0) |
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype) |
|
|
|
return controlnet_conditioning_image |
|
|
|
|
|
class StableDiffusionControlNetInpaintImg2ImgPipeline(DiffusionPipeline): |
|
""" |
|
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/ |
|
""" |
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: ControlNetModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
|
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
cpu_offload_with_hook(self.controlnet, device) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
mask_image, |
|
controlnet_conditioning_image, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
strength=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
controlnet_cond_image_is_pil = isinstance(controlnet_conditioning_image, PIL.Image.Image) |
|
controlnet_cond_image_is_tensor = isinstance(controlnet_conditioning_image, torch.Tensor) |
|
controlnet_cond_image_is_pil_list = isinstance(controlnet_conditioning_image, list) and isinstance( |
|
controlnet_conditioning_image[0], PIL.Image.Image |
|
) |
|
controlnet_cond_image_is_tensor_list = isinstance(controlnet_conditioning_image, list) and isinstance( |
|
controlnet_conditioning_image[0], torch.Tensor |
|
) |
|
|
|
if ( |
|
not controlnet_cond_image_is_pil |
|
and not controlnet_cond_image_is_tensor |
|
and not controlnet_cond_image_is_pil_list |
|
and not controlnet_cond_image_is_tensor_list |
|
): |
|
raise TypeError( |
|
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" |
|
) |
|
|
|
if controlnet_cond_image_is_pil: |
|
controlnet_cond_image_batch_size = 1 |
|
elif controlnet_cond_image_is_tensor: |
|
controlnet_cond_image_batch_size = controlnet_conditioning_image.shape[0] |
|
elif controlnet_cond_image_is_pil_list: |
|
controlnet_cond_image_batch_size = len(controlnet_conditioning_image) |
|
elif controlnet_cond_image_is_tensor_list: |
|
controlnet_cond_image_batch_size = len(controlnet_conditioning_image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
elif prompt_embeds is not None: |
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
if controlnet_cond_image_batch_size != 1 and controlnet_cond_image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {controlnet_cond_image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor): |
|
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor") |
|
|
|
if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image): |
|
raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image") |
|
|
|
if isinstance(image, torch.Tensor): |
|
if image.ndim != 3 and image.ndim != 4: |
|
raise ValueError("`image` must have 3 or 4 dimensions") |
|
|
|
if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4: |
|
raise ValueError("`mask_image` must have 2, 3, or 4 dimensions") |
|
|
|
if image.ndim == 3: |
|
image_batch_size = 1 |
|
image_channels, image_height, image_width = image.shape |
|
elif image.ndim == 4: |
|
image_batch_size, image_channels, image_height, image_width = image.shape |
|
|
|
if mask_image.ndim == 2: |
|
mask_image_batch_size = 1 |
|
mask_image_channels = 1 |
|
mask_image_height, mask_image_width = mask_image.shape |
|
elif mask_image.ndim == 3: |
|
mask_image_channels = 1 |
|
mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape |
|
elif mask_image.ndim == 4: |
|
mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape |
|
|
|
if image_channels != 3: |
|
raise ValueError("`image` must have 3 channels") |
|
|
|
if mask_image_channels != 1: |
|
raise ValueError("`mask_image` must have 1 channel") |
|
|
|
if image_batch_size != mask_image_batch_size: |
|
raise ValueError("`image` and `mask_image` mush have the same batch sizes") |
|
|
|
if image_height != mask_image_height or image_width != mask_image_width: |
|
raise ValueError("`image` and `mask_image` must have the same height and width dimensions") |
|
|
|
if image.min() < -1 or image.max() > 1: |
|
raise ValueError("`image` should be in range [-1, 1]") |
|
|
|
if mask_image.min() < 0 or mask_image.max() > 1: |
|
raise ValueError("`mask_image` should be in range [0, 1]") |
|
else: |
|
mask_image_channels = 1 |
|
image_channels = 3 |
|
|
|
single_image_latent_channels = self.vae.config.latent_channels |
|
|
|
total_latent_channels = single_image_latent_channels * 2 + mask_image_channels |
|
|
|
if total_latent_channels != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received" |
|
f" non inpainting latent channels: {single_image_latent_channels}," |
|
f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}." |
|
f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs." |
|
) |
|
|
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance): |
|
|
|
|
|
|
|
mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) |
|
mask_image = mask_image.to(device=device, dtype=dtype) |
|
|
|
|
|
if mask_image.shape[0] < batch_size: |
|
if not batch_size % mask_image.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1) |
|
|
|
mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image |
|
|
|
mask_image_latents = mask_image |
|
|
|
return mask_image_latents |
|
|
|
def prepare_masked_image_latents( |
|
self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance |
|
): |
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
|
|
if isinstance(generator, list): |
|
masked_image_latents = [ |
|
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
masked_image_latents = torch.cat(masked_image_latents, dim=0) |
|
else: |
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) |
|
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents |
|
|
|
|
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) |
|
|
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
return masked_image_latents |
|
|
|
def _default_height_width(self, height, width, image): |
|
if isinstance(image, list): |
|
image = image[0] |
|
|
|
if height is None: |
|
if isinstance(image, PIL.Image.Image): |
|
height = image.height |
|
elif isinstance(image, torch.Tensor): |
|
height = image.shape[3] |
|
|
|
height = (height // 8) * 8 |
|
|
|
if width is None: |
|
if isinstance(image, PIL.Image.Image): |
|
width = image.width |
|
elif isinstance(image, torch.Tensor): |
|
width = image.shape[2] |
|
|
|
width = (width // 8) * 8 |
|
|
|
return height, width |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: Union[torch.Tensor, PIL.Image.Image] = None, |
|
mask_image: Union[torch.Tensor, PIL.Image.Image] = None, |
|
controlnet_conditioning_image: Union[ |
|
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image] |
|
] = None, |
|
strength: float = 0.8, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: float = 1.0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`torch.Tensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will |
|
be masked out with `mask_image` and repainted according to `prompt`. |
|
mask_image (`torch.Tensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted |
|
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) |
|
instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`): |
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If |
|
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can |
|
also be accepted as an image. The control image is automatically resized to fit the output image. |
|
strength (`float`, *optional*): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0): |
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original unet. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height, width = self._default_height_width(height, width, controlnet_conditioning_image) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
mask_image, |
|
controlnet_conditioning_image, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
strength, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
image = prepare_image(image) |
|
|
|
mask_image = prepare_mask_image(mask_image) |
|
|
|
controlnet_conditioning_image = prepare_controlnet_conditioning_image( |
|
controlnet_conditioning_image, |
|
width, |
|
height, |
|
batch_size * num_images_per_prompt, |
|
num_images_per_prompt, |
|
device, |
|
self.controlnet.dtype, |
|
) |
|
|
|
masked_image = image * (mask_image < 0.5) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
mask_image_latents = self.prepare_mask_latents( |
|
mask_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
masked_image_latents = self.prepare_masked_image_latents( |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
non_inpainting_latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
|
|
non_inpainting_latent_model_input = self.scheduler.scale_model_input( |
|
non_inpainting_latent_model_input, t |
|
) |
|
|
|
inpainting_latent_model_input = torch.cat( |
|
[non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1 |
|
) |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
non_inpainting_latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
controlnet_cond=controlnet_conditioning_image, |
|
return_dict=False, |
|
) |
|
|
|
down_block_res_samples = [ |
|
down_block_res_sample * controlnet_conditioning_scale |
|
for down_block_res_sample in down_block_res_samples |
|
] |
|
mid_block_res_sample *= controlnet_conditioning_scale |
|
|
|
|
|
noise_pred = self.unet( |
|
inpainting_latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
has_nsfw_concept = None |
|
elif output_type == "pil": |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
else: |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|