|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Union |
|
|
|
import torch |
|
from packaging import version |
|
from PIL import Image |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models.attention import BasicTransformerBlock |
|
from diffusers.models.attention_processor import LoRAAttnProcessor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import DiffusionPipeline |
|
>>> import torch |
|
|
|
>>> model_id = "dreamlike-art/dreamlike-photoreal-2.0" |
|
>>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric") |
|
>>> pipe = pipe.to("cuda") |
|
>>> prompt = "a giant standing in a fantasy landscape best quality" |
|
>>> liked = [] # list of images for positive feedback |
|
>>> disliked = [] # list of images for negative feedback |
|
>>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0] |
|
``` |
|
""" |
|
|
|
|
|
class FabricCrossAttnProcessor: |
|
def __init__(self): |
|
self.attntion_probs = None |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
weights=None, |
|
lora_scale=1.0, |
|
): |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if isinstance(attn.processor, LoRAAttnProcessor): |
|
query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states) |
|
else: |
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if isinstance(attn.processor, LoRAAttnProcessor): |
|
key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states) |
|
else: |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
|
if weights is not None: |
|
if weights.shape[0] != 1: |
|
weights = weights.repeat_interleave(attn.heads, dim=0) |
|
attention_probs = attention_probs * weights[:, None] |
|
attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
if isinstance(attn.processor, LoRAAttnProcessor): |
|
hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states) |
|
else: |
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class FabricPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`EulerAncestralDiscreteScheduler`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
|
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
unet=unet, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def get_unet_hidden_states(self, z_all, t, prompt_embd): |
|
cached_hidden_states = [] |
|
for module in self.unet.modules(): |
|
if isinstance(module, BasicTransformerBlock): |
|
|
|
def new_forward(self, hidden_states, *args, **kwargs): |
|
cached_hidden_states.append(hidden_states.clone().detach().cpu()) |
|
return self.old_forward(hidden_states, *args, **kwargs) |
|
|
|
module.attn1.old_forward = module.attn1.forward |
|
module.attn1.forward = new_forward.__get__(module.attn1) |
|
|
|
|
|
_ = self.unet(z_all, t, encoder_hidden_states=prompt_embd) |
|
|
|
|
|
for module in self.unet.modules(): |
|
if isinstance(module, BasicTransformerBlock): |
|
module.attn1.forward = module.attn1.old_forward |
|
del module.attn1.old_forward |
|
|
|
return cached_hidden_states |
|
|
|
def unet_forward_with_cached_hidden_states( |
|
self, |
|
z_all, |
|
t, |
|
prompt_embd, |
|
cached_pos_hiddens: Optional[List[torch.Tensor]] = None, |
|
cached_neg_hiddens: Optional[List[torch.Tensor]] = None, |
|
pos_weights=(0.8, 0.8), |
|
neg_weights=(0.5, 0.5), |
|
): |
|
if cached_pos_hiddens is None and cached_neg_hiddens is None: |
|
return self.unet(z_all, t, encoder_hidden_states=prompt_embd) |
|
|
|
local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() |
|
local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() |
|
for block, pos_weight, neg_weight in zip( |
|
self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks, |
|
local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1], |
|
local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1], |
|
): |
|
for module in block.modules(): |
|
if isinstance(module, BasicTransformerBlock): |
|
|
|
def new_forward( |
|
self, |
|
hidden_states, |
|
pos_weight=pos_weight, |
|
neg_weight=neg_weight, |
|
**kwargs, |
|
): |
|
cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0) |
|
batch_size, d_model = cond_hiddens.shape[:2] |
|
device, dtype = hidden_states.device, hidden_states.dtype |
|
|
|
weights = torch.ones(batch_size, d_model, device=device, dtype=dtype) |
|
out_pos = self.old_forward(hidden_states) |
|
out_neg = self.old_forward(hidden_states) |
|
|
|
if cached_pos_hiddens is not None: |
|
cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device) |
|
cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1) |
|
pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model) |
|
pos_weights[:, d_model:] = pos_weight |
|
attn_with_weights = FabricCrossAttnProcessor() |
|
out_pos = attn_with_weights( |
|
self, |
|
cond_hiddens, |
|
encoder_hidden_states=cond_pos_hs, |
|
weights=pos_weights, |
|
) |
|
else: |
|
out_pos = self.old_forward(cond_hiddens) |
|
|
|
if cached_neg_hiddens is not None: |
|
cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device) |
|
uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1) |
|
neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model) |
|
neg_weights[:, d_model:] = neg_weight |
|
attn_with_weights = FabricCrossAttnProcessor() |
|
out_neg = attn_with_weights( |
|
self, |
|
uncond_hiddens, |
|
encoder_hidden_states=uncond_neg_hs, |
|
weights=neg_weights, |
|
) |
|
else: |
|
out_neg = self.old_forward(uncond_hiddens) |
|
|
|
out = torch.cat([out_pos, out_neg], dim=0) |
|
return out |
|
|
|
module.attn1.old_forward = module.attn1.forward |
|
module.attn1.forward = new_forward.__get__(module.attn1) |
|
|
|
out = self.unet(z_all, t, encoder_hidden_states=prompt_embd) |
|
|
|
|
|
for module in self.unet.modules(): |
|
if isinstance(module, BasicTransformerBlock): |
|
module.attn1.forward = module.attn1.old_forward |
|
del module.attn1.old_forward |
|
|
|
return out |
|
|
|
def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor: |
|
images_t = [self.image_to_tensor(img, dim, dtype) for img in images] |
|
images_t = torch.stack(images_t).to(device) |
|
latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator) |
|
|
|
return torch.cat([latents], dim=0) |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
negative_prompt=None, |
|
liked=None, |
|
disliked=None, |
|
height=None, |
|
width=None, |
|
): |
|
if prompt is None: |
|
raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.") |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and ( |
|
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list) |
|
): |
|
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") |
|
|
|
if liked is not None and not isinstance(liked, list): |
|
raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}") |
|
|
|
if disliked is not None and not isinstance(disliked, list): |
|
raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}") |
|
|
|
if height is not None and not isinstance(height, int): |
|
raise ValueError(f"`height` has to be of type `int` but is {type(height)}") |
|
|
|
if width is not None and not isinstance(width, int): |
|
raise ValueError(f"`width` has to be of type `int` but is {type(width)}") |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = "", |
|
negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality", |
|
liked: Optional[Union[List[str], List[Image.Image]]] = [], |
|
disliked: Optional[Union[List[str], List[Image.Image]]] = [], |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
return_dict: bool = True, |
|
num_images: int = 4, |
|
guidance_scale: float = 7.0, |
|
num_inference_steps: int = 20, |
|
output_type: Optional[str] = "pil", |
|
feedback_start_ratio: float = 0.33, |
|
feedback_end_ratio: float = 0.66, |
|
min_weight: float = 0.05, |
|
max_weight: float = 0.8, |
|
neg_scale: float = 0.5, |
|
pos_bottleneck_scale: float = 1.0, |
|
neg_bottleneck_scale: float = 1.0, |
|
latents: Optional[torch.Tensor] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The |
|
feedback can be given as a list of liked and disliked images. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds` |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
liked (`List[Image.Image]` or `List[str]`, *optional*): |
|
Encourages images with liked features. |
|
disliked (`List[Image.Image]` or `List[str]`, *optional*): |
|
Discourages images with disliked features. |
|
generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to |
|
make generation deterministic. |
|
height (`int`, *optional*, defaults to 512): |
|
Height of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
Width of the generated image. |
|
num_images (`int`, *optional*, defaults to 4): |
|
The number of images to generate per prompt. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
num_inference_steps (`int`, *optional*, defaults to 20): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
feedback_start_ratio (`float`, *optional*, defaults to `.33`): |
|
Start point for providing feedback (between 0 and 1). |
|
feedback_end_ratio (`float`, *optional*, defaults to `.66`): |
|
End point for providing feedback (between 0 and 1). |
|
min_weight (`float`, *optional*, defaults to `.05`): |
|
Minimum weight for feedback. |
|
max_weight (`float`, *optional*, defults tp `1.0`): |
|
Maximum weight for feedback. |
|
neg_scale (`float`, *optional*, defaults to `.5`): |
|
Scale factor for negative feedback. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.fabric.FabricPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
|
|
""" |
|
|
|
self.check_inputs(prompt, negative_prompt, liked, disliked) |
|
|
|
device = self._execution_device |
|
dtype = self.unet.dtype |
|
|
|
if isinstance(prompt, str) and prompt is not None: |
|
batch_size = 1 |
|
elif isinstance(prompt, list) and prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if isinstance(negative_prompt, str): |
|
negative_prompt = negative_prompt |
|
elif isinstance(negative_prompt, list): |
|
negative_prompt = negative_prompt |
|
else: |
|
assert len(negative_prompt) == batch_size |
|
|
|
shape = ( |
|
batch_size * num_images, |
|
self.unet.config.in_channels, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
latent_noise = randn_tensor( |
|
shape, |
|
device=device, |
|
dtype=dtype, |
|
generator=generator, |
|
) |
|
|
|
positive_latents = ( |
|
self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator) |
|
if liked and len(liked) > 0 |
|
else torch.tensor( |
|
[], |
|
device=device, |
|
dtype=dtype, |
|
) |
|
) |
|
negative_latents = ( |
|
self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator) |
|
if disliked and len(disliked) > 0 |
|
else torch.tensor( |
|
[], |
|
device=device, |
|
dtype=dtype, |
|
) |
|
) |
|
|
|
do_classifier_free_guidance = guidance_scale > 0.1 |
|
|
|
(prompt_neg_embs, prompt_pos_embs) = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
).split([num_images * batch_size, num_images * batch_size]) |
|
|
|
batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0) |
|
|
|
null_tokens = self.tokenizer( |
|
[""], |
|
return_tensors="pt", |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = null_tokens.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
null_prompt_emb = self.text_encoder( |
|
input_ids=null_tokens.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
).last_hidden_state |
|
|
|
null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
latent_noise = latent_noise * self.scheduler.init_noise_sigma |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
ref_start_idx = round(len(timesteps) * feedback_start_ratio) |
|
ref_end_idx = round(len(timesteps) * feedback_end_ratio) |
|
|
|
with self.progress_bar(total=num_inference_steps) as pbar: |
|
for i, t in enumerate(timesteps): |
|
sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0 |
|
if hasattr(self.scheduler, "sigmas"): |
|
sigma = self.scheduler.sigmas[i] |
|
|
|
alpha_hat = 1 / (sigma**2 + 1) |
|
|
|
z_single = self.scheduler.scale_model_input(latent_noise, t) |
|
z_all = torch.cat([z_single] * 2, dim=0) |
|
z_ref = torch.cat([positive_latents, negative_latents], dim=0) |
|
|
|
if i >= ref_start_idx and i <= ref_end_idx: |
|
weight_factor = max_weight |
|
else: |
|
weight_factor = min_weight |
|
|
|
pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale) |
|
neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale) |
|
|
|
if z_ref.size(0) > 0 and weight_factor > 0: |
|
noise = torch.randn_like(z_ref) |
|
if isinstance(self.scheduler, EulerAncestralDiscreteScheduler): |
|
z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype) |
|
else: |
|
z_ref_noised = self.scheduler.add_noise(z_ref, noise, t) |
|
|
|
ref_prompt_embd = torch.cat( |
|
[null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0 |
|
) |
|
cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd) |
|
|
|
n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0] |
|
cached_pos_hs, cached_neg_hs = [], [] |
|
for hs in cached_hidden_states: |
|
cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0) |
|
cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1) |
|
cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1) |
|
cached_pos_hs.append(cached_pos) |
|
cached_neg_hs.append(cached_neg) |
|
|
|
if n_pos == 0: |
|
cached_pos_hs = None |
|
if n_neg == 0: |
|
cached_neg_hs = None |
|
else: |
|
cached_pos_hs, cached_neg_hs = None, None |
|
unet_out = self.unet_forward_with_cached_hidden_states( |
|
z_all, |
|
t, |
|
prompt_embd=batched_prompt_embd, |
|
cached_pos_hiddens=cached_pos_hs, |
|
cached_neg_hiddens=cached_neg_hs, |
|
pos_weights=pos_ws, |
|
neg_weights=neg_ws, |
|
)[0] |
|
|
|
noise_cond, noise_uncond = unet_out.chunk(2) |
|
guidance = noise_cond - noise_uncond |
|
noise_pred = noise_uncond + guidance_scale * guidance |
|
latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0] |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
pbar.update() |
|
|
|
y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0] |
|
imgs = self.image_processor.postprocess( |
|
y, |
|
output_type=output_type, |
|
) |
|
|
|
if not return_dict: |
|
return imgs |
|
|
|
return StableDiffusionPipelineOutput(imgs, False) |
|
|
|
def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype): |
|
""" |
|
Convert latent PIL image to a torch tensor for further processing. |
|
""" |
|
if isinstance(image, str): |
|
image = Image.open(image) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0] |
|
return image.type(dtype) |
|
|