|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers import StableDiffusionXLControlNetImg2ImgPipeline |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.models import ControlNetModel |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
from diffusers.utils import ( |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version |
|
|
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
|
|
xformers_available = True |
|
except Exception: |
|
xformers_available = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
logger.warning( |
|
"To use instant id pipelines, please make sure you have the `insightface` library installed: `pip install insightface`." |
|
"Please refer to: https://huggingface.co/InstantX/InstantID for further instructions regarding inference" |
|
) |
|
|
|
|
|
def FeedForward(dim, mult=4): |
|
inner_dim = int(dim * mult) |
|
return nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, inner_dim, bias=False), |
|
nn.GELU(), |
|
nn.Linear(inner_dim, dim, bias=False), |
|
) |
|
|
|
|
|
def reshape_tensor(x, heads): |
|
bs, length, width = x.shape |
|
|
|
x = x.view(bs, length, heads, -1) |
|
|
|
x = x.transpose(1, 2) |
|
|
|
x = x.reshape(bs, heads, length, -1) |
|
return x |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__(self, *, dim, dim_head=64, heads=8): |
|
super().__init__() |
|
self.scale = dim_head**-0.5 |
|
self.dim_head = dim_head |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, n1, D) |
|
latent (torch.Tensor): latent features |
|
shape (b, n2, D) |
|
""" |
|
x = self.norm1(x) |
|
latents = self.norm2(latents) |
|
|
|
b, l, _ = latents.shape |
|
|
|
q = self.to_q(latents) |
|
kv_input = torch.cat((x, latents), dim=-2) |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
|
|
q = reshape_tensor(q, self.heads) |
|
k = reshape_tensor(k, self.heads) |
|
v = reshape_tensor(v, self.heads) |
|
|
|
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) |
|
weight = (q * scale) @ (k * scale).transpose(-2, -1) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
out = weight @ v |
|
|
|
out = out.permute(0, 2, 1, 3).reshape(b, l, -1) |
|
|
|
return self.to_out(out) |
|
|
|
|
|
class Resampler(nn.Module): |
|
def __init__( |
|
self, |
|
dim=1024, |
|
depth=8, |
|
dim_head=64, |
|
heads=16, |
|
num_queries=8, |
|
embedding_dim=768, |
|
output_dim=1024, |
|
ff_mult=4, |
|
): |
|
super().__init__() |
|
|
|
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) |
|
|
|
self.proj_in = nn.Linear(embedding_dim, dim) |
|
|
|
self.proj_out = nn.Linear(dim, output_dim) |
|
self.norm_out = nn.LayerNorm(output_dim) |
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), |
|
FeedForward(dim=dim, mult=ff_mult), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
latents = self.latents.repeat(x.size(0), 1, 1) |
|
x = self.proj_in(x) |
|
|
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
latents = self.proj_out(latents) |
|
return self.norm_out(latents) |
|
|
|
|
|
class AttnProcessor(nn.Module): |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
): |
|
super().__init__() |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class IPAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
if xformers_available: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
else: |
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = attn.head_to_batch_dim(ip_key) |
|
ip_value = attn.head_to_batch_dim(ip_value) |
|
|
|
if xformers_available: |
|
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None) |
|
else: |
|
ip_attention_probs = attn.get_attention_scores(query, ip_key, None) |
|
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) |
|
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): |
|
|
|
query = query.contiguous() |
|
key = key.contiguous() |
|
value = value.contiguous() |
|
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) |
|
return hidden_states |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> # !pip install opencv-python transformers accelerate insightface |
|
>>> import diffusers |
|
>>> from diffusers.utils import load_image |
|
>>> from diffusers.models import ControlNetModel |
|
|
|
>>> import cv2 |
|
>>> import torch |
|
>>> import numpy as np |
|
>>> from PIL import Image |
|
|
|
>>> from insightface.app import FaceAnalysis |
|
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps |
|
|
|
>>> # download 'antelopev2' under ./models |
|
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
>>> app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
>>> # download models under ./checkpoints |
|
>>> face_adapter = f'./checkpoints/ip-adapter.bin' |
|
>>> controlnet_path = f'./checkpoints/ControlNetModel' |
|
|
|
>>> # load IdentityNet |
|
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
|
|
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.cuda() |
|
|
|
>>> # load adapter |
|
>>> pipe.load_ip_adapter_instantid(face_adapter) |
|
|
|
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" |
|
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured" |
|
|
|
>>> # load an image |
|
>>> image = load_image("your-example.jpg") |
|
|
|
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1] |
|
>>> face_emb = face_info['embedding'] |
|
>>> face_kps = draw_kps(face_image, face_info['kps']) |
|
|
|
>>> pipe.set_ip_adapter_scale(0.8) |
|
|
|
>>> # generate image |
|
>>> image = pipe( |
|
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8 |
|
... ).images[0] |
|
``` |
|
""" |
|
|
|
|
|
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): |
|
stickwidth = 4 |
|
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) |
|
kps = np.array(kps) |
|
|
|
w, h = image_pil.size |
|
out_img = np.zeros([h, w, 3]) |
|
|
|
for i in range(len(limbSeq)): |
|
index = limbSeq[i] |
|
color = color_list[index[0]] |
|
|
|
x = kps[index][:, 0] |
|
y = kps[index][:, 1] |
|
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) |
|
polygon = cv2.ellipse2Poly( |
|
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 |
|
) |
|
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) |
|
out_img = (out_img * 0.6).astype(np.uint8) |
|
|
|
for idx_kp, kp in enumerate(kps): |
|
color = color_list[idx_kp] |
|
x, y = kp |
|
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) |
|
|
|
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) |
|
return out_img_pil |
|
|
|
|
|
class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline): |
|
def cuda(self, dtype=torch.float16, use_xformers=False): |
|
self.to("cuda", dtype) |
|
|
|
if hasattr(self, "image_proj_model"): |
|
self.image_proj_model.to(self.unet.device).to(self.unet.dtype) |
|
|
|
if use_xformers: |
|
if is_xformers_available(): |
|
import xformers |
|
from packaging import version |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
self.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5): |
|
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens) |
|
self.set_ip_adapter(model_ckpt, num_tokens, scale) |
|
|
|
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16): |
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=num_tokens, |
|
embedding_dim=image_emb_dim, |
|
output_dim=self.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
) |
|
|
|
image_proj_model.eval() |
|
|
|
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype) |
|
state_dict = torch.load(model_ckpt, map_location="cpu") |
|
if "image_proj" in state_dict: |
|
state_dict = state_dict["image_proj"] |
|
self.image_proj_model.load_state_dict(state_dict) |
|
|
|
self.image_proj_model_in_features = image_emb_dim |
|
|
|
def set_ip_adapter(self, model_ckpt, num_tokens, scale): |
|
unet = self.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype) |
|
else: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=scale, |
|
num_tokens=num_tokens, |
|
).to(unet.device, dtype=unet.dtype) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
state_dict = torch.load(model_ckpt, map_location="cpu") |
|
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values()) |
|
if "ip_adapter" in state_dict: |
|
state_dict = state_dict["ip_adapter"] |
|
ip_layers.load_state_dict(state_dict) |
|
|
|
def set_ip_adapter_scale(self, scale): |
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
for attn_processor in unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance): |
|
if isinstance(prompt_image_emb, torch.Tensor): |
|
prompt_image_emb = prompt_image_emb.clone().detach() |
|
else: |
|
prompt_image_emb = torch.tensor(prompt_image_emb) |
|
|
|
prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype) |
|
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features]) |
|
|
|
if do_classifier_free_guidance: |
|
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0) |
|
else: |
|
prompt_image_emb = torch.cat([prompt_image_emb], dim=0) |
|
|
|
prompt_image_emb = self.image_proj_model(prompt_image_emb) |
|
return prompt_image_emb |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
control_image: PipelineImageInput = None, |
|
strength: float = 0.8, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
original_size: Tuple[int, int] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Tuple[int, int] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
aesthetic_score: float = 6.0, |
|
negative_aesthetic_score: float = 2.5, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders. |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be |
|
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height |
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in |
|
`init`, images must be passed as a list such that each element of the list can be correctly batched for |
|
input to a single ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` |
|
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, pooled text embeddings are generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt |
|
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input |
|
argument. |
|
image_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated image embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned containing the output images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
control_image, |
|
strength, |
|
num_inference_steps, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
None, |
|
None, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt, |
|
prompt_2, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
prompt_image_emb = self._encode_prompt_image_emb( |
|
image_embeds, device, self.unet.dtype, self.do_classifier_free_guidance |
|
) |
|
bs_embed, seq_len, _ = prompt_image_emb.shape |
|
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1) |
|
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
control_image = self.prepare_control_image( |
|
image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
height, width = control_image.shape[-2:] |
|
elif isinstance(controlnet, MultiControlNetModel): |
|
control_images = [] |
|
|
|
for control_image_ in control_image: |
|
control_image_ = self.prepare_control_image( |
|
image=control_image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
control_images.append(control_image_) |
|
|
|
control_image = control_images |
|
height, width = control_image[0].shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
True, |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
if isinstance(control_image, list): |
|
original_size = original_size or control_image[0].shape[-2:] |
|
else: |
|
original_size = original_size or control_image.shape[-2:] |
|
target_size = target_size or (height, width) |
|
|
|
if negative_original_size is None: |
|
negative_original_size = original_size |
|
if negative_target_size is None: |
|
negative_target_size = target_size |
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
aesthetic_score, |
|
negative_aesthetic_score, |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
is_unet_compiled = is_compiled_module(self.unet) |
|
is_controlnet_compiled = is_compiled_module(self.controlnet) |
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: |
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
controlnet_added_cond_kwargs = { |
|
"text_embeds": add_text_embeds.chunk(2)[1], |
|
"time_ids": add_time_ids.chunk(2)[1], |
|
} |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=prompt_image_emb, |
|
controlnet_cond=control_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|