|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import ast |
|
import gc |
|
import math |
|
import warnings |
|
from collections.abc import Iterable |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.attention import Attention, GatedSelfAttentionDense |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import logging, replace_example_docstring |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained( |
|
... "longlian/lmd_plus", |
|
... custom_pipeline="llm_grounded_diffusion", |
|
... variant="fp16", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> # Generate an image described by the prompt and |
|
>>> # insert objects described by text at the region defined by bounding boxes |
|
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage" |
|
>>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]] |
|
>>> phrases = ["a waterfall", "a modern high speed train"] |
|
|
|
>>> images = pipe( |
|
... prompt=prompt, |
|
... phrases=phrases, |
|
... boxes=boxes, |
|
... gligen_scheduled_sampling_beta=0.4, |
|
... output_type="pil", |
|
... num_inference_steps=50, |
|
... lmd_guidance_kwargs={} |
|
... ).images |
|
|
|
>>> images[0].save("./lmd_plus_generation.jpg") |
|
|
|
>>> # Generate directly from a text prompt and an LLM response |
|
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage" |
|
>>> phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response(\""" |
|
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])] |
|
Background prompt: A beautiful forest with fall foliage |
|
Negative prompt: |
|
\""") |
|
|
|
>> images = pipe( |
|
... prompt=prompt, |
|
... negative_prompt=neg_prompt, |
|
... phrases=phrases, |
|
... boxes=boxes, |
|
... gligen_scheduled_sampling_beta=0.4, |
|
... output_type="pil", |
|
... num_inference_steps=50, |
|
... lmd_guidance_kwargs={} |
|
... ).images |
|
|
|
>>> images[0].save("./lmd_plus_generation.jpg") |
|
|
|
images[0] |
|
|
|
``` |
|
""" |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
DEFAULT_GUIDANCE_ATTN_KEYS = [("mid", 0, 0, 0), ("up", 1, 0, 0), ("up", 1, 1, 0), ("up", 1, 2, 0)] |
|
|
|
|
|
def convert_attn_keys(key): |
|
"""Convert the attention key from tuple format to the torch state format""" |
|
|
|
if key[0] == "mid": |
|
assert key[1] == 0, f"mid block only has one block but the index is {key[1]}" |
|
return f"{key[0]}_block.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor" |
|
|
|
return f"{key[0]}_blocks.{key[1]}.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor" |
|
|
|
|
|
DEFAULT_GUIDANCE_ATTN_KEYS = [convert_attn_keys(key) for key in DEFAULT_GUIDANCE_ATTN_KEYS] |
|
|
|
|
|
def scale_proportion(obj_box, H, W): |
|
|
|
x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H) |
|
box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H) |
|
x_max, y_max = x_min + box_w, y_min + box_h |
|
|
|
x_min, y_min = max(x_min, 0), max(y_min, 0) |
|
x_max, y_max = min(x_max, W), min(y_max, H) |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
|
|
|
|
class AttnProcessorWithHook(AttnProcessor2_0): |
|
def __init__(self, attn_processor_key, hidden_size, cross_attention_dim, hook=None, fast_attn=True, enabled=True): |
|
super().__init__() |
|
self.attn_processor_key = attn_processor_key |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.hook = hook |
|
self.fast_attn = fast_attn |
|
self.enabled = enabled |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
scale: float = 1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states, scale=scale) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, scale=scale) |
|
value = attn.to_v(encoder_hidden_states, scale=scale) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
if (self.hook is not None and self.enabled) or not self.fast_attn: |
|
query_batch_dim = attn.head_to_batch_dim(query) |
|
key_batch_dim = attn.head_to_batch_dim(key) |
|
value_batch_dim = attn.head_to_batch_dim(value) |
|
attention_probs = attn.get_attention_scores(query_batch_dim, key_batch_dim, attention_mask) |
|
|
|
if self.hook is not None and self.enabled: |
|
|
|
self.hook(self.attn_processor_key, query_batch_dim, key_batch_dim, value_batch_dim, attention_probs) |
|
|
|
if self.fast_attn: |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, scale=scale) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class LLMGroundedDiffusionPipeline(StableDiffusionPipeline): |
|
r""" |
|
Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://arxiv.org/pdf/2305.13655.pdf. |
|
|
|
This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
This is a simplified implementation that does not perform latent or attention transfer from single object generation to overall generation. The final image is generated directly with attention and adapters control. |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
requires_safety_checker (bool): |
|
Whether a safety checker is needed for this pipeline. |
|
""" |
|
|
|
objects_text = "Objects: " |
|
bg_prompt_text = "Background prompt: " |
|
bg_prompt_text_no_trailing_space = bg_prompt_text.rstrip() |
|
neg_prompt_text = "Negative prompt: " |
|
neg_prompt_text_no_trailing_space = neg_prompt_text.rstrip() |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__( |
|
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker |
|
) |
|
|
|
self.register_attn_hooks(unet) |
|
self._saved_attn = None |
|
|
|
def attn_hook(self, name, query, key, value, attention_probs): |
|
if name in DEFAULT_GUIDANCE_ATTN_KEYS: |
|
self._saved_attn[name] = attention_probs |
|
|
|
@classmethod |
|
def convert_box(cls, box, height, width): |
|
|
|
x_min, y_min = box[0] / width, box[1] / height |
|
w_box, h_box = box[2] / width, box[3] / height |
|
|
|
x_max, y_max = x_min + w_box, y_min + h_box |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
@classmethod |
|
def _parse_response_with_negative(cls, text): |
|
if not text: |
|
raise ValueError("LLM response is empty") |
|
|
|
if cls.objects_text in text: |
|
text = text.split(cls.objects_text)[1] |
|
|
|
text_split = text.split(cls.bg_prompt_text_no_trailing_space) |
|
if len(text_split) == 2: |
|
gen_boxes, text_rem = text_split |
|
else: |
|
raise ValueError(f"LLM response is incomplete: {text}") |
|
|
|
text_split = text_rem.split(cls.neg_prompt_text_no_trailing_space) |
|
|
|
if len(text_split) == 2: |
|
bg_prompt, neg_prompt = text_split |
|
else: |
|
raise ValueError(f"LLM response is incomplete: {text}") |
|
|
|
try: |
|
gen_boxes = ast.literal_eval(gen_boxes) |
|
except SyntaxError as e: |
|
|
|
if "No objects" in gen_boxes or gen_boxes.strip() == "": |
|
gen_boxes = [] |
|
else: |
|
raise e |
|
bg_prompt = bg_prompt.strip() |
|
neg_prompt = neg_prompt.strip() |
|
|
|
|
|
if neg_prompt == "None": |
|
neg_prompt = "" |
|
|
|
return gen_boxes, bg_prompt, neg_prompt |
|
|
|
@classmethod |
|
def parse_llm_response(cls, response, canvas_height=512, canvas_width=512): |
|
|
|
gen_boxes, bg_prompt, neg_prompt = cls._parse_response_with_negative(text=response) |
|
|
|
gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0]) |
|
|
|
phrases = [name for name, _ in gen_boxes] |
|
boxes = [cls.convert_box(box, height=canvas_height, width=canvas_width) for _, box in gen_boxes] |
|
|
|
return phrases, boxes, bg_prompt, neg_prompt |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
phrases, |
|
boxes, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
phrase_indices=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt is None and phrase_indices is None: |
|
raise ValueError("If the prompt is None, the phrase_indices cannot be None") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if len(phrases) != len(boxes): |
|
ValueError( |
|
"length of `phrases` and `boxes` has to be same, but" |
|
f" got: `phrases` {len(phrases)} != `boxes` {len(boxes)}" |
|
) |
|
|
|
def register_attn_hooks(self, unet): |
|
"""Registering hooks to obtain the attention maps for guidance""" |
|
|
|
attn_procs = {} |
|
|
|
for name in unet.attn_processors.keys(): |
|
|
|
if name.endswith("attn1.processor") or name.endswith("fuser.attn.processor"): |
|
|
|
attn_procs[name] = unet.attn_processors[name] |
|
continue |
|
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
|
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
|
|
attn_procs[name] = AttnProcessorWithHook( |
|
attn_processor_key=name, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
hook=self.attn_hook, |
|
fast_attn=True, |
|
|
|
enabled=False, |
|
) |
|
|
|
unet.set_attn_processor(attn_procs) |
|
|
|
def enable_fuser(self, enabled=True): |
|
for module in self.unet.modules(): |
|
if isinstance(module, GatedSelfAttentionDense): |
|
module.enabled = enabled |
|
|
|
def enable_attn_hook(self, enabled=True): |
|
for module in self.unet.attn_processors.values(): |
|
if isinstance(module, AttnProcessorWithHook): |
|
module.enabled = enabled |
|
|
|
def get_token_map(self, prompt, padding="do_not_pad", verbose=False): |
|
"""Get a list of mapping: prompt index to str (prompt in a list of token str)""" |
|
fg_prompt_tokens = self.tokenizer([prompt], padding=padding, max_length=77, return_tensors="np") |
|
input_ids = fg_prompt_tokens["input_ids"][0] |
|
|
|
token_map = [] |
|
for ind, item in enumerate(input_ids.tolist()): |
|
token = self.tokenizer._convert_id_to_token(item) |
|
|
|
if verbose: |
|
logger.info(f"{ind}, {token} ({item})") |
|
|
|
token_map.append(token) |
|
|
|
return token_map |
|
|
|
def get_phrase_indices(self, prompt, phrases, token_map=None, add_suffix_if_not_found=False, verbose=False): |
|
for obj in phrases: |
|
|
|
if obj not in prompt: |
|
prompt += "| " + obj |
|
|
|
if token_map is None: |
|
|
|
token_map = self.get_token_map(prompt=prompt, padding="do_not_pad", verbose=verbose) |
|
token_map_str = " ".join(token_map) |
|
|
|
phrase_indices = [] |
|
|
|
for obj in phrases: |
|
phrase_token_map = self.get_token_map(prompt=obj, padding="do_not_pad", verbose=verbose) |
|
|
|
phrase_token_map = phrase_token_map[1:-1] |
|
phrase_token_map_len = len(phrase_token_map) |
|
phrase_token_map_str = " ".join(phrase_token_map) |
|
|
|
if verbose: |
|
logger.info("Full str:", token_map_str, "Substr:", phrase_token_map_str, "Phrase:", phrases) |
|
|
|
|
|
|
|
obj_first_index = len(token_map_str[: token_map_str.index(phrase_token_map_str) - 1].split(" ")) |
|
|
|
obj_position = list(range(obj_first_index, obj_first_index + phrase_token_map_len)) |
|
phrase_indices.append(obj_position) |
|
|
|
if add_suffix_if_not_found: |
|
return phrase_indices, prompt |
|
|
|
return phrase_indices |
|
|
|
def add_ca_loss_per_attn_map_to_loss( |
|
self, |
|
loss, |
|
attn_map, |
|
object_number, |
|
bboxes, |
|
phrase_indices, |
|
fg_top_p=0.2, |
|
bg_top_p=0.2, |
|
fg_weight=1.0, |
|
bg_weight=1.0, |
|
): |
|
|
|
b, i, j = attn_map.shape |
|
H = W = int(math.sqrt(i)) |
|
for obj_idx in range(object_number): |
|
obj_loss = 0 |
|
mask = torch.zeros(size=(H, W), device="cuda") |
|
obj_boxes = bboxes[obj_idx] |
|
|
|
|
|
if not isinstance(obj_boxes[0], Iterable): |
|
obj_boxes = [obj_boxes] |
|
|
|
for obj_box in obj_boxes: |
|
|
|
x_min, y_min, x_max, y_max = scale_proportion(obj_box, H=H, W=W) |
|
mask[y_min:y_max, x_min:x_max] = 1 |
|
|
|
for obj_position in phrase_indices[obj_idx]: |
|
|
|
|
|
|
|
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W) |
|
|
|
|
|
ca_map_obj = attn_map[:, :, obj_position] |
|
k_fg = (mask.sum() * fg_top_p).long().clamp_(min=1) |
|
k_bg = ((1 - mask).sum() * bg_top_p).long().clamp_(min=1) |
|
|
|
mask_1d = mask.view(1, -1) |
|
|
|
|
|
|
|
|
|
|
|
obj_loss += (1 - (ca_map_obj * mask_1d).topk(k=k_fg).values.mean(dim=1)).sum(dim=0) * fg_weight |
|
obj_loss += ((ca_map_obj * (1 - mask_1d)).topk(k=k_bg).values.mean(dim=1)).sum(dim=0) * bg_weight |
|
|
|
loss += obj_loss / len(phrase_indices[obj_idx]) |
|
|
|
return loss |
|
|
|
def compute_ca_loss(self, saved_attn, bboxes, phrase_indices, guidance_attn_keys, verbose=False, **kwargs): |
|
""" |
|
The `saved_attn` is supposed to be passed to `save_attn_to_dict` in `cross_attention_kwargs` prior to computing ths loss. |
|
`AttnProcessor` will put attention maps into the `save_attn_to_dict`. |
|
|
|
`index` is the timestep. |
|
`ref_ca_word_token_only`: This has precedence over `ref_ca_last_token_only` (i.e., if both are enabled, we take the token from word rather than the last token). |
|
`ref_ca_last_token_only`: `ref_ca_saved_attn` comes from the attention map of the last token of the phrase in single object generation, so we apply it only to the last token of the phrase in overall generation if this is set to True. If set to False, `ref_ca_saved_attn` will be applied to all the text tokens. |
|
""" |
|
loss = torch.tensor(0).float().cuda() |
|
object_number = len(bboxes) |
|
if object_number == 0: |
|
return loss |
|
|
|
for attn_key in guidance_attn_keys: |
|
|
|
|
|
attn_map_integrated = saved_attn[attn_key] |
|
if not attn_map_integrated.is_cuda: |
|
attn_map_integrated = attn_map_integrated.cuda() |
|
|
|
attn_map = attn_map_integrated.squeeze(dim=0) |
|
|
|
loss = self.add_ca_loss_per_attn_map_to_loss( |
|
loss, attn_map, object_number, bboxes, phrase_indices, **kwargs |
|
) |
|
|
|
num_attn = len(guidance_attn_keys) |
|
|
|
if num_attn > 0: |
|
loss = loss / (object_number * num_attn) |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
gligen_scheduled_sampling_beta: float = 0.3, |
|
phrases: List[str] = None, |
|
boxes: List[List[float]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
lmd_guidance_kwargs: Optional[Dict[str, Any]] = {}, |
|
phrase_indices: Optional[List[int]] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
phrases (`List[str]`): |
|
The phrases to guide what to include in each of the regions defined by the corresponding |
|
`boxes`. There should only be one phrase per bounding box. |
|
boxes (`List[List[float]]`): |
|
The bounding boxes that identify rectangular regions of the image that are going to be filled with the |
|
content described by the corresponding `phrases`. Each rectangular box is defined as a |
|
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1]. |
|
gligen_scheduled_sampling_beta (`float`, defaults to 0.3): |
|
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image |
|
Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for |
|
scheduled sampling during inference for improved quality and controllability. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when |
|
using zero terminal SNR. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
lmd_guidance_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to `latent_lmd_guidance` function. Useful keys include `loss_scale` (the guidance strength), `loss_threshold` (when loss is lower than this value, the guidance is not applied anymore), `max_iter` (the number of iterations of guidance for each step), and `guidance_timesteps` (the number of diffusion timesteps to apply guidance on). See `latent_lmd_guidance` for implementation details. |
|
phrase_indices (`list` of `list`, *optional*): The indices of the tokens of each phrase in the overall prompt. If omitted, the pipeline will match the first token subsequence. The pipeline will append the missing phrases to the end of the prompt by default. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
phrases, |
|
boxes, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
phrase_indices, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
if phrase_indices is None: |
|
phrase_indices, prompt = self.get_phrase_indices(prompt, phrases, add_suffix_if_not_found=True) |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
if phrase_indices is None: |
|
phrase_indices = [] |
|
prompt_parsed = [] |
|
for prompt_item in prompt: |
|
phrase_indices_parsed_item, prompt_parsed_item = self.get_phrase_indices( |
|
prompt_item, add_suffix_if_not_found=True |
|
) |
|
phrase_indices.append(phrase_indices_parsed_item) |
|
prompt_parsed.append(prompt_parsed_item) |
|
prompt = prompt_parsed |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
cond_prompt_embeds = prompt_embeds |
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
max_objs = 30 |
|
if len(boxes) > max_objs: |
|
warnings.warn( |
|
f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.", |
|
FutureWarning, |
|
) |
|
phrases = phrases[:max_objs] |
|
boxes = boxes[:max_objs] |
|
|
|
n_objs = len(boxes) |
|
if n_objs: |
|
|
|
|
|
tokenizer_inputs = self.tokenizer(phrases, padding=True, return_tensors="pt").to(device) |
|
|
|
|
|
_text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output |
|
|
|
|
|
|
|
cond_boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) |
|
if n_objs: |
|
cond_boxes[:n_objs] = torch.tensor(boxes) |
|
text_embeddings = torch.zeros( |
|
max_objs, self.unet.config.cross_attention_dim, device=device, dtype=self.text_encoder.dtype |
|
) |
|
if n_objs: |
|
text_embeddings[:n_objs] = _text_embeddings |
|
|
|
masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) |
|
masks[:n_objs] = 1 |
|
|
|
repeat_batch = batch_size * num_images_per_prompt |
|
cond_boxes = cond_boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() |
|
text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone() |
|
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() |
|
if do_classifier_free_guidance: |
|
repeat_batch = repeat_batch * 2 |
|
cond_boxes = torch.cat([cond_boxes] * 2) |
|
text_embeddings = torch.cat([text_embeddings] * 2) |
|
masks = torch.cat([masks] * 2) |
|
masks[: repeat_batch // 2] = 0 |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
cross_attention_kwargs["gligen"] = { |
|
"boxes": cond_boxes, |
|
"positive_embeddings": text_embeddings, |
|
"masks": masks, |
|
} |
|
|
|
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps)) |
|
self.enable_fuser(True) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
loss_attn = torch.tensor(10000.0) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == num_grounding_steps: |
|
self.enable_fuser(False) |
|
|
|
if latents.shape[1] != 4: |
|
latents = torch.randn_like(latents[:, :4]) |
|
|
|
|
|
if boxes: |
|
latents, loss_attn = self.latent_lmd_guidance( |
|
cond_prompt_embeds, |
|
index=i, |
|
boxes=boxes, |
|
phrase_indices=phrase_indices, |
|
t=t, |
|
latents=latents, |
|
loss=loss_attn, |
|
**lmd_guidance_kwargs, |
|
) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
@torch.set_grad_enabled(True) |
|
def latent_lmd_guidance( |
|
self, |
|
cond_embeddings, |
|
index, |
|
boxes, |
|
phrase_indices, |
|
t, |
|
latents, |
|
loss, |
|
*, |
|
loss_scale=20, |
|
loss_threshold=5.0, |
|
max_iter=[3] * 5 + [2] * 5 + [1] * 5, |
|
guidance_timesteps=15, |
|
cross_attention_kwargs=None, |
|
guidance_attn_keys=DEFAULT_GUIDANCE_ATTN_KEYS, |
|
verbose=False, |
|
clear_cache=False, |
|
unet_additional_kwargs={}, |
|
guidance_callback=None, |
|
**kwargs, |
|
): |
|
scheduler, unet = self.scheduler, self.unet |
|
|
|
iteration = 0 |
|
|
|
if index < guidance_timesteps: |
|
if isinstance(max_iter, list): |
|
max_iter = max_iter[index] |
|
|
|
if verbose: |
|
logger.info( |
|
f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}" |
|
) |
|
|
|
try: |
|
self.enable_attn_hook(enabled=True) |
|
|
|
while ( |
|
loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < guidance_timesteps |
|
): |
|
self._saved_attn = {} |
|
|
|
latents.requires_grad_(True) |
|
latent_model_input = latents |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=cond_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
**unet_additional_kwargs, |
|
) |
|
|
|
|
|
loss = ( |
|
self.compute_ca_loss( |
|
saved_attn=self._saved_attn, |
|
bboxes=boxes, |
|
phrase_indices=phrase_indices, |
|
guidance_attn_keys=guidance_attn_keys, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
* loss_scale |
|
) |
|
|
|
if torch.isnan(loss): |
|
raise RuntimeError("**Loss is NaN**") |
|
|
|
|
|
if guidance_callback is not None: |
|
guidance_callback(self, latents, loss, iteration, index) |
|
|
|
self._saved_attn = None |
|
|
|
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0] |
|
|
|
latents.requires_grad_(False) |
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[t] |
|
|
|
|
|
scale = (1 - alpha_prod_t) ** (0.5) |
|
latents = latents - scale * grad_cond |
|
|
|
iteration += 1 |
|
|
|
if clear_cache: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
if verbose: |
|
logger.info( |
|
f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}" |
|
) |
|
|
|
finally: |
|
self.enable_attn_hook(enabled=False) |
|
|
|
return latents, loss |
|
|