|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import os |
|
from collections import OrderedDict |
|
from copy import copy |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import onnx |
|
import onnx_graphsurgeon as gs |
|
import PIL |
|
import tensorrt as trt |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from onnx import shape_inference |
|
from polygraphy import cuda |
|
from polygraphy.backend.common import bytes_from_path |
|
from polygraphy.backend.onnx.loader import fold_constants |
|
from polygraphy.backend.trt import ( |
|
CreateConfig, |
|
Profile, |
|
engine_from_bytes, |
|
engine_from_network, |
|
network_from_onnx_path, |
|
save_engine, |
|
) |
|
from polygraphy.backend.trt import util as trt_util |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion import ( |
|
StableDiffusionImg2ImgPipeline, |
|
StableDiffusionPipelineOutput, |
|
StableDiffusionSafetyChecker, |
|
) |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils import DIFFUSERS_CACHE, logging |
|
|
|
|
|
""" |
|
Installation instructions |
|
python3 -m pip install --upgrade transformers diffusers>=0.16.0 |
|
python3 -m pip install --upgrade tensorrt>=8.6.1 |
|
python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com |
|
python3 -m pip install onnxruntime |
|
""" |
|
|
|
TRT_LOGGER = trt.Logger(trt.Logger.ERROR) |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
numpy_to_torch_dtype_dict = { |
|
np.uint8: torch.uint8, |
|
np.int8: torch.int8, |
|
np.int16: torch.int16, |
|
np.int32: torch.int32, |
|
np.int64: torch.int64, |
|
np.float16: torch.float16, |
|
np.float32: torch.float32, |
|
np.float64: torch.float64, |
|
np.complex64: torch.complex64, |
|
np.complex128: torch.complex128, |
|
} |
|
if np.version.full_version >= "1.24.0": |
|
numpy_to_torch_dtype_dict[np.bool_] = torch.bool |
|
else: |
|
numpy_to_torch_dtype_dict[np.bool] = torch.bool |
|
|
|
|
|
torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()} |
|
|
|
|
|
def device_view(t): |
|
return cuda.DeviceView(ptr=t.data_ptr(), shape=t.shape, dtype=torch_to_numpy_dtype_dict[t.dtype]) |
|
|
|
|
|
def preprocess_image(image): |
|
""" |
|
image: torch.Tensor |
|
""" |
|
w, h = image.size |
|
w, h = (x - x % 32 for x in (w, h)) |
|
image = image.resize((w, h)) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).contiguous() |
|
return 2.0 * image - 1.0 |
|
|
|
|
|
class Engine: |
|
def __init__(self, engine_path): |
|
self.engine_path = engine_path |
|
self.engine = None |
|
self.context = None |
|
self.buffers = OrderedDict() |
|
self.tensors = OrderedDict() |
|
|
|
def __del__(self): |
|
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)] |
|
del self.engine |
|
del self.context |
|
del self.buffers |
|
del self.tensors |
|
|
|
def build( |
|
self, |
|
onnx_path, |
|
fp16, |
|
input_profile=None, |
|
enable_preview=False, |
|
enable_all_tactics=False, |
|
timing_cache=None, |
|
workspace_size=0, |
|
): |
|
logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}") |
|
p = Profile() |
|
if input_profile: |
|
for name, dims in input_profile.items(): |
|
assert len(dims) == 3 |
|
p.add(name, min=dims[0], opt=dims[1], max=dims[2]) |
|
|
|
config_kwargs = {} |
|
|
|
config_kwargs["preview_features"] = [trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805] |
|
if enable_preview: |
|
|
|
config_kwargs["preview_features"].append(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805) |
|
if workspace_size > 0: |
|
config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size} |
|
if not enable_all_tactics: |
|
config_kwargs["tactic_sources"] = [] |
|
|
|
engine = engine_from_network( |
|
network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]), |
|
config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **config_kwargs), |
|
save_timing_cache=timing_cache, |
|
) |
|
save_engine(engine, path=self.engine_path) |
|
|
|
def load(self): |
|
logger.warning(f"Loading TensorRT engine: {self.engine_path}") |
|
self.engine = engine_from_bytes(bytes_from_path(self.engine_path)) |
|
|
|
def activate(self): |
|
self.context = self.engine.create_execution_context() |
|
|
|
def allocate_buffers(self, shape_dict=None, device="cuda"): |
|
for idx in range(trt_util.get_bindings_per_profile(self.engine)): |
|
binding = self.engine[idx] |
|
if shape_dict and binding in shape_dict: |
|
shape = shape_dict[binding] |
|
else: |
|
shape = self.engine.get_binding_shape(binding) |
|
dtype = trt.nptype(self.engine.get_binding_dtype(binding)) |
|
if self.engine.binding_is_input(binding): |
|
self.context.set_binding_shape(idx, shape) |
|
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device) |
|
self.tensors[binding] = tensor |
|
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype) |
|
|
|
def infer(self, feed_dict, stream): |
|
start_binding, end_binding = trt_util.get_active_profile_bindings(self.context) |
|
|
|
device_buffers = copy(self.buffers) |
|
for name, buf in feed_dict.items(): |
|
assert isinstance(buf, cuda.DeviceView) |
|
device_buffers[name] = buf |
|
bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()] |
|
noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr) |
|
if not noerror: |
|
raise ValueError("ERROR: inference failed.") |
|
|
|
return self.tensors |
|
|
|
|
|
class Optimizer: |
|
def __init__(self, onnx_graph): |
|
self.graph = gs.import_onnx(onnx_graph) |
|
|
|
def cleanup(self, return_onnx=False): |
|
self.graph.cleanup().toposort() |
|
if return_onnx: |
|
return gs.export_onnx(self.graph) |
|
|
|
def select_outputs(self, keep, names=None): |
|
self.graph.outputs = [self.graph.outputs[o] for o in keep] |
|
if names: |
|
for i, name in enumerate(names): |
|
self.graph.outputs[i].name = name |
|
|
|
def fold_constants(self, return_onnx=False): |
|
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) |
|
self.graph = gs.import_onnx(onnx_graph) |
|
if return_onnx: |
|
return onnx_graph |
|
|
|
def infer_shapes(self, return_onnx=False): |
|
onnx_graph = gs.export_onnx(self.graph) |
|
if onnx_graph.ByteSize() > 2147483648: |
|
raise TypeError("ERROR: model size exceeds supported 2GB limit") |
|
else: |
|
onnx_graph = shape_inference.infer_shapes(onnx_graph) |
|
|
|
self.graph = gs.import_onnx(onnx_graph) |
|
if return_onnx: |
|
return onnx_graph |
|
|
|
|
|
class BaseModel: |
|
def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77): |
|
self.model = model |
|
self.name = "SD Model" |
|
self.fp16 = fp16 |
|
self.device = device |
|
|
|
self.min_batch = 1 |
|
self.max_batch = max_batch_size |
|
self.min_image_shape = 256 |
|
self.max_image_shape = 1024 |
|
self.min_latent_shape = self.min_image_shape // 8 |
|
self.max_latent_shape = self.max_image_shape // 8 |
|
|
|
self.embedding_dim = embedding_dim |
|
self.text_maxlen = text_maxlen |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def get_input_names(self): |
|
pass |
|
|
|
def get_output_names(self): |
|
pass |
|
|
|
def get_dynamic_axes(self): |
|
return None |
|
|
|
def get_sample_input(self, batch_size, image_height, image_width): |
|
pass |
|
|
|
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
return None |
|
|
|
def get_shape_dict(self, batch_size, image_height, image_width): |
|
return None |
|
|
|
def optimize(self, onnx_graph): |
|
opt = Optimizer(onnx_graph) |
|
opt.cleanup() |
|
opt.fold_constants() |
|
opt.infer_shapes() |
|
onnx_opt_graph = opt.cleanup(return_onnx=True) |
|
return onnx_opt_graph |
|
|
|
def check_dims(self, batch_size, image_height, image_width): |
|
assert batch_size >= self.min_batch and batch_size <= self.max_batch |
|
assert image_height % 8 == 0 or image_width % 8 == 0 |
|
latent_height = image_height // 8 |
|
latent_width = image_width // 8 |
|
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape |
|
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape |
|
return (latent_height, latent_width) |
|
|
|
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
min_batch = batch_size if static_batch else self.min_batch |
|
max_batch = batch_size if static_batch else self.max_batch |
|
latent_height = image_height // 8 |
|
latent_width = image_width // 8 |
|
min_image_height = image_height if static_shape else self.min_image_shape |
|
max_image_height = image_height if static_shape else self.max_image_shape |
|
min_image_width = image_width if static_shape else self.min_image_shape |
|
max_image_width = image_width if static_shape else self.max_image_shape |
|
min_latent_height = latent_height if static_shape else self.min_latent_shape |
|
max_latent_height = latent_height if static_shape else self.max_latent_shape |
|
min_latent_width = latent_width if static_shape else self.min_latent_shape |
|
max_latent_width = latent_width if static_shape else self.max_latent_shape |
|
return ( |
|
min_batch, |
|
max_batch, |
|
min_image_height, |
|
max_image_height, |
|
min_image_width, |
|
max_image_width, |
|
min_latent_height, |
|
max_latent_height, |
|
min_latent_width, |
|
max_latent_width, |
|
) |
|
|
|
|
|
def getOnnxPath(model_name, onnx_dir, opt=True): |
|
return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx") |
|
|
|
|
|
def getEnginePath(model_name, engine_dir): |
|
return os.path.join(engine_dir, model_name + ".plan") |
|
|
|
|
|
def build_engines( |
|
models: dict, |
|
engine_dir, |
|
onnx_dir, |
|
onnx_opset, |
|
opt_image_height, |
|
opt_image_width, |
|
opt_batch_size=1, |
|
force_engine_rebuild=False, |
|
static_batch=False, |
|
static_shape=True, |
|
enable_preview=False, |
|
enable_all_tactics=False, |
|
timing_cache=None, |
|
max_workspace_size=0, |
|
): |
|
built_engines = {} |
|
if not os.path.isdir(onnx_dir): |
|
os.makedirs(onnx_dir) |
|
if not os.path.isdir(engine_dir): |
|
os.makedirs(engine_dir) |
|
|
|
|
|
for model_name, model_obj in models.items(): |
|
engine_path = getEnginePath(model_name, engine_dir) |
|
if force_engine_rebuild or not os.path.exists(engine_path): |
|
logger.warning("Building Engines...") |
|
logger.warning("Engine build can take a while to complete") |
|
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) |
|
onnx_opt_path = getOnnxPath(model_name, onnx_dir) |
|
if force_engine_rebuild or not os.path.exists(onnx_opt_path): |
|
if force_engine_rebuild or not os.path.exists(onnx_path): |
|
logger.warning(f"Exporting model: {onnx_path}") |
|
model = model_obj.get_model() |
|
with torch.inference_mode(), torch.autocast("cuda"): |
|
inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width) |
|
torch.onnx.export( |
|
model, |
|
inputs, |
|
onnx_path, |
|
export_params=True, |
|
opset_version=onnx_opset, |
|
do_constant_folding=True, |
|
input_names=model_obj.get_input_names(), |
|
output_names=model_obj.get_output_names(), |
|
dynamic_axes=model_obj.get_dynamic_axes(), |
|
) |
|
del model |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
else: |
|
logger.warning(f"Found cached model: {onnx_path}") |
|
|
|
|
|
if force_engine_rebuild or not os.path.exists(onnx_opt_path): |
|
logger.warning(f"Generating optimizing model: {onnx_opt_path}") |
|
onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path)) |
|
onnx.save(onnx_opt_graph, onnx_opt_path) |
|
else: |
|
logger.warning(f"Found cached optimized model: {onnx_opt_path} ") |
|
|
|
|
|
for model_name, model_obj in models.items(): |
|
engine_path = getEnginePath(model_name, engine_dir) |
|
engine = Engine(engine_path) |
|
onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) |
|
onnx_opt_path = getOnnxPath(model_name, onnx_dir) |
|
|
|
if force_engine_rebuild or not os.path.exists(engine.engine_path): |
|
engine.build( |
|
onnx_opt_path, |
|
fp16=True, |
|
input_profile=model_obj.get_input_profile( |
|
opt_batch_size, |
|
opt_image_height, |
|
opt_image_width, |
|
static_batch=static_batch, |
|
static_shape=static_shape, |
|
), |
|
enable_preview=enable_preview, |
|
timing_cache=timing_cache, |
|
workspace_size=max_workspace_size, |
|
) |
|
built_engines[model_name] = engine |
|
|
|
|
|
for model_name, model_obj in models.items(): |
|
engine = built_engines[model_name] |
|
engine.load() |
|
engine.activate() |
|
|
|
return built_engines |
|
|
|
|
|
def runEngine(engine, feed_dict, stream): |
|
return engine.infer(feed_dict, stream) |
|
|
|
|
|
class CLIP(BaseModel): |
|
def __init__(self, model, device, max_batch_size, embedding_dim): |
|
super(CLIP, self).__init__( |
|
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim |
|
) |
|
self.name = "CLIP" |
|
|
|
def get_input_names(self): |
|
return ["input_ids"] |
|
|
|
def get_output_names(self): |
|
return ["text_embeddings", "pooler_output"] |
|
|
|
def get_dynamic_axes(self): |
|
return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}} |
|
|
|
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
self.check_dims(batch_size, image_height, image_width) |
|
min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims( |
|
batch_size, image_height, image_width, static_batch, static_shape |
|
) |
|
return { |
|
"input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)] |
|
} |
|
|
|
def get_shape_dict(self, batch_size, image_height, image_width): |
|
self.check_dims(batch_size, image_height, image_width) |
|
return { |
|
"input_ids": (batch_size, self.text_maxlen), |
|
"text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim), |
|
} |
|
|
|
def get_sample_input(self, batch_size, image_height, image_width): |
|
self.check_dims(batch_size, image_height, image_width) |
|
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device) |
|
|
|
def optimize(self, onnx_graph): |
|
opt = Optimizer(onnx_graph) |
|
opt.select_outputs([0]) |
|
opt.cleanup() |
|
opt.fold_constants() |
|
opt.infer_shapes() |
|
opt.select_outputs([0], names=["text_embeddings"]) |
|
opt_onnx_graph = opt.cleanup(return_onnx=True) |
|
return opt_onnx_graph |
|
|
|
|
|
def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False): |
|
return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) |
|
|
|
|
|
class UNet(BaseModel): |
|
def __init__( |
|
self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4 |
|
): |
|
super(UNet, self).__init__( |
|
model=model, |
|
fp16=fp16, |
|
device=device, |
|
max_batch_size=max_batch_size, |
|
embedding_dim=embedding_dim, |
|
text_maxlen=text_maxlen, |
|
) |
|
self.unet_dim = unet_dim |
|
self.name = "UNet" |
|
|
|
def get_input_names(self): |
|
return ["sample", "timestep", "encoder_hidden_states"] |
|
|
|
def get_output_names(self): |
|
return ["latent"] |
|
|
|
def get_dynamic_axes(self): |
|
return { |
|
"sample": {0: "2B", 2: "H", 3: "W"}, |
|
"encoder_hidden_states": {0: "2B"}, |
|
"latent": {0: "2B", 2: "H", 3: "W"}, |
|
} |
|
|
|
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
( |
|
min_batch, |
|
max_batch, |
|
_, |
|
_, |
|
_, |
|
_, |
|
min_latent_height, |
|
max_latent_height, |
|
min_latent_width, |
|
max_latent_width, |
|
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) |
|
return { |
|
"sample": [ |
|
(2 * min_batch, self.unet_dim, min_latent_height, min_latent_width), |
|
(2 * batch_size, self.unet_dim, latent_height, latent_width), |
|
(2 * max_batch, self.unet_dim, max_latent_height, max_latent_width), |
|
], |
|
"encoder_hidden_states": [ |
|
(2 * min_batch, self.text_maxlen, self.embedding_dim), |
|
(2 * batch_size, self.text_maxlen, self.embedding_dim), |
|
(2 * max_batch, self.text_maxlen, self.embedding_dim), |
|
], |
|
} |
|
|
|
def get_shape_dict(self, batch_size, image_height, image_width): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
return { |
|
"sample": (2 * batch_size, self.unet_dim, latent_height, latent_width), |
|
"encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim), |
|
"latent": (2 * batch_size, 4, latent_height, latent_width), |
|
} |
|
|
|
def get_sample_input(self, batch_size, image_height, image_width): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
dtype = torch.float16 if self.fp16 else torch.float32 |
|
return ( |
|
torch.randn( |
|
2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device |
|
), |
|
torch.tensor([1.0], dtype=torch.float32, device=self.device), |
|
torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device), |
|
) |
|
|
|
|
|
def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False): |
|
return UNet( |
|
model, |
|
fp16=True, |
|
device=device, |
|
max_batch_size=max_batch_size, |
|
embedding_dim=embedding_dim, |
|
unet_dim=(9 if inpaint else 4), |
|
) |
|
|
|
|
|
class VAE(BaseModel): |
|
def __init__(self, model, device, max_batch_size, embedding_dim): |
|
super(VAE, self).__init__( |
|
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim |
|
) |
|
self.name = "VAE decoder" |
|
|
|
def get_input_names(self): |
|
return ["latent"] |
|
|
|
def get_output_names(self): |
|
return ["images"] |
|
|
|
def get_dynamic_axes(self): |
|
return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}} |
|
|
|
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
( |
|
min_batch, |
|
max_batch, |
|
_, |
|
_, |
|
_, |
|
_, |
|
min_latent_height, |
|
max_latent_height, |
|
min_latent_width, |
|
max_latent_width, |
|
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) |
|
return { |
|
"latent": [ |
|
(min_batch, 4, min_latent_height, min_latent_width), |
|
(batch_size, 4, latent_height, latent_width), |
|
(max_batch, 4, max_latent_height, max_latent_width), |
|
] |
|
} |
|
|
|
def get_shape_dict(self, batch_size, image_height, image_width): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
return { |
|
"latent": (batch_size, 4, latent_height, latent_width), |
|
"images": (batch_size, 3, image_height, image_width), |
|
} |
|
|
|
def get_sample_input(self, batch_size, image_height, image_width): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device) |
|
|
|
|
|
def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False): |
|
return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) |
|
|
|
|
|
class TorchVAEEncoder(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.vae_encoder = model |
|
|
|
def forward(self, x): |
|
return self.vae_encoder.encode(x).latent_dist.sample() |
|
|
|
|
|
class VAEEncoder(BaseModel): |
|
def __init__(self, model, device, max_batch_size, embedding_dim): |
|
super(VAEEncoder, self).__init__( |
|
model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim |
|
) |
|
self.name = "VAE encoder" |
|
|
|
def get_model(self): |
|
vae_encoder = TorchVAEEncoder(self.model) |
|
return vae_encoder |
|
|
|
def get_input_names(self): |
|
return ["images"] |
|
|
|
def get_output_names(self): |
|
return ["latent"] |
|
|
|
def get_dynamic_axes(self): |
|
return {"images": {0: "B", 2: "8H", 3: "8W"}, "latent": {0: "B", 2: "H", 3: "W"}} |
|
|
|
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): |
|
assert batch_size >= self.min_batch and batch_size <= self.max_batch |
|
min_batch = batch_size if static_batch else self.min_batch |
|
max_batch = batch_size if static_batch else self.max_batch |
|
self.check_dims(batch_size, image_height, image_width) |
|
( |
|
min_batch, |
|
max_batch, |
|
min_image_height, |
|
max_image_height, |
|
min_image_width, |
|
max_image_width, |
|
_, |
|
_, |
|
_, |
|
_, |
|
) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) |
|
|
|
return { |
|
"images": [ |
|
(min_batch, 3, min_image_height, min_image_width), |
|
(batch_size, 3, image_height, image_width), |
|
(max_batch, 3, max_image_height, max_image_width), |
|
] |
|
} |
|
|
|
def get_shape_dict(self, batch_size, image_height, image_width): |
|
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) |
|
return { |
|
"images": (batch_size, 3, image_height, image_width), |
|
"latent": (batch_size, 4, latent_height, latent_width), |
|
} |
|
|
|
def get_sample_input(self, batch_size, image_height, image_width): |
|
self.check_dims(batch_size, image_height, image_width) |
|
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device) |
|
|
|
|
|
def make_VAEEncoder(model, device, max_batch_size, embedding_dim, inpaint=False): |
|
return VAEEncoder(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) |
|
|
|
|
|
class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline): |
|
r""" |
|
Pipeline for image-to-image generation using TensorRT accelerated Stable Diffusion. |
|
|
|
This model inherits from [`StableDiffusionImg2ImgPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: DDIMScheduler, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
stages=["clip", "unet", "vae", "vae_encoder"], |
|
image_height: int = 512, |
|
image_width: int = 512, |
|
max_batch_size: int = 16, |
|
|
|
onnx_opset: int = 17, |
|
onnx_dir: str = "onnx", |
|
|
|
engine_dir: str = "engine", |
|
build_preview_features: bool = True, |
|
force_engine_rebuild: bool = False, |
|
timing_cache: str = "timing_cache", |
|
): |
|
super().__init__( |
|
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker |
|
) |
|
|
|
self.vae.forward = self.vae.decode |
|
|
|
self.stages = stages |
|
self.image_height, self.image_width = image_height, image_width |
|
self.inpaint = False |
|
self.onnx_opset = onnx_opset |
|
self.onnx_dir = onnx_dir |
|
self.engine_dir = engine_dir |
|
self.force_engine_rebuild = force_engine_rebuild |
|
self.timing_cache = timing_cache |
|
self.build_static_batch = False |
|
self.build_dynamic_shape = False |
|
self.build_preview_features = build_preview_features |
|
|
|
self.max_batch_size = max_batch_size |
|
|
|
if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512: |
|
self.max_batch_size = 4 |
|
|
|
self.stream = None |
|
self.models = {} |
|
self.engine = {} |
|
|
|
def __loadModels(self): |
|
|
|
self.embedding_dim = self.text_encoder.config.hidden_size |
|
models_args = { |
|
"device": self.torch_device, |
|
"max_batch_size": self.max_batch_size, |
|
"embedding_dim": self.embedding_dim, |
|
"inpaint": self.inpaint, |
|
} |
|
if "clip" in self.stages: |
|
self.models["clip"] = make_CLIP(self.text_encoder, **models_args) |
|
if "unet" in self.stages: |
|
self.models["unet"] = make_UNet(self.unet, **models_args) |
|
if "vae" in self.stages: |
|
self.models["vae"] = make_VAE(self.vae, **models_args) |
|
if "vae_encoder" in self.stages: |
|
self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args) |
|
|
|
@classmethod |
|
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
|
|
cls.cached_folder = ( |
|
pretrained_model_name_or_path |
|
if os.path.isdir(pretrained_model_name_or_path) |
|
else snapshot_download( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
) |
|
) |
|
|
|
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False): |
|
super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings) |
|
|
|
self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir) |
|
self.engine_dir = os.path.join(self.cached_folder, self.engine_dir) |
|
self.timing_cache = os.path.join(self.cached_folder, self.timing_cache) |
|
|
|
|
|
self.torch_device = self._execution_device |
|
logger.warning(f"Running inference on device: {self.torch_device}") |
|
|
|
|
|
self.__loadModels() |
|
|
|
|
|
self.engine = build_engines( |
|
self.models, |
|
self.engine_dir, |
|
self.onnx_dir, |
|
self.onnx_opset, |
|
opt_image_height=self.image_height, |
|
opt_image_width=self.image_width, |
|
force_engine_rebuild=self.force_engine_rebuild, |
|
static_batch=self.build_static_batch, |
|
static_shape=not self.build_dynamic_shape, |
|
enable_preview=self.build_preview_features, |
|
timing_cache=self.timing_cache, |
|
) |
|
|
|
return self |
|
|
|
def __initialize_timesteps(self, timesteps, strength): |
|
self.scheduler.set_timesteps(timesteps) |
|
offset = self.scheduler.steps_offset if hasattr(self.scheduler, "steps_offset") else 0 |
|
init_timestep = int(timesteps * strength) + offset |
|
init_timestep = min(init_timestep, timesteps) |
|
t_start = max(timesteps - init_timestep + offset, 0) |
|
timesteps = self.scheduler.timesteps[t_start:].to(self.torch_device) |
|
return timesteps, t_start |
|
|
|
def __preprocess_images(self, batch_size, images=()): |
|
init_images = [] |
|
for image in images: |
|
image = image.to(self.torch_device).float() |
|
image = image.repeat(batch_size, 1, 1, 1) |
|
init_images.append(image) |
|
return tuple(init_images) |
|
|
|
def __encode_image(self, init_image): |
|
init_latents = runEngine(self.engine["vae_encoder"], {"images": device_view(init_image)}, self.stream)[ |
|
"latent" |
|
] |
|
init_latents = 0.18215 * init_latents |
|
return init_latents |
|
|
|
def __encode_prompt(self, prompt, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
""" |
|
|
|
text_input_ids = ( |
|
self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
.input_ids.type(torch.int32) |
|
.to(self.torch_device) |
|
) |
|
|
|
text_input_ids_inp = device_view(text_input_ids) |
|
|
|
text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids_inp}, self.stream)[ |
|
"text_embeddings" |
|
].clone() |
|
|
|
|
|
uncond_input_ids = ( |
|
self.tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
.input_ids.type(torch.int32) |
|
.to(self.torch_device) |
|
) |
|
uncond_input_ids_inp = device_view(uncond_input_ids) |
|
uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids_inp}, self.stream)[ |
|
"text_embeddings" |
|
] |
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16) |
|
|
|
return text_embeddings |
|
|
|
def __denoise_latent( |
|
self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None |
|
): |
|
if not isinstance(timesteps, torch.Tensor): |
|
timesteps = self.scheduler.timesteps |
|
for step_index, timestep in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep) |
|
if isinstance(mask, torch.Tensor): |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
|
|
timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep |
|
|
|
sample_inp = device_view(latent_model_input) |
|
timestep_inp = device_view(timestep_float) |
|
embeddings_inp = device_view(text_embeddings) |
|
noise_pred = runEngine( |
|
self.engine["unet"], |
|
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp}, |
|
self.stream, |
|
)["latent"] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample |
|
|
|
latents = 1.0 / 0.18215 * latents |
|
return latents |
|
|
|
def __decode_latent(self, latents): |
|
images = runEngine(self.engine["vae"], {"latent": device_view(latents)}, self.stream)["images"] |
|
images = (images / 2 + 0.5).clamp(0, 1) |
|
return images.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
def __loadResources(self, image_height, image_width, batch_size): |
|
self.stream = cuda.Stream() |
|
|
|
|
|
for model_name, obj in self.models.items(): |
|
self.engine[model_name].allocate_buffers( |
|
shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will |
|
be masked out with `mask_image` and repainted according to `prompt`. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
|
|
""" |
|
self.generator = generator |
|
self.denoising_steps = num_inference_steps |
|
self.guidance_scale = guidance_scale |
|
|
|
|
|
self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
prompt = [prompt] |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}") |
|
|
|
if negative_prompt is None: |
|
negative_prompt = [""] * batch_size |
|
|
|
if negative_prompt is not None and isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] |
|
|
|
assert len(prompt) == len(negative_prompt) |
|
|
|
if batch_size > self.max_batch_size: |
|
raise ValueError( |
|
f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4" |
|
) |
|
|
|
|
|
self.__loadResources(self.image_height, self.image_width, batch_size) |
|
|
|
with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER): |
|
|
|
timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength) |
|
latent_timestep = timesteps[:1].repeat(batch_size) |
|
|
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = preprocess_image(image) |
|
init_image = self.__preprocess_images(batch_size, (image,))[0] |
|
|
|
|
|
init_latents = self.__encode_image(init_image) |
|
|
|
|
|
noise = torch.randn( |
|
init_latents.shape, generator=self.generator, device=self.torch_device, dtype=torch.float32 |
|
) |
|
latents = self.scheduler.add_noise(init_latents, noise, latent_timestep) |
|
|
|
|
|
text_embeddings = self.__encode_prompt(prompt, negative_prompt) |
|
|
|
|
|
latents = self.__denoise_latent(latents, text_embeddings, timesteps=timesteps, step_offset=t_start) |
|
|
|
|
|
images = self.__decode_latent(latents) |
|
|
|
images = self.numpy_to_pil(images) |
|
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=None) |
|
|